Hostname: page-component-68c7f8b79f-xmwfq Total loading time: 0 Render date: 2025-12-18T05:35:47.742Z Has data issue: false hasContentIssue false

Nonlinear dynamics analysis of an ionic surfactant-laden thread in a radial electric field

Published online by Cambridge University Press:  18 December 2025

Xiaocong Yang
Affiliation:
School of Astronautics, Beihang University, Beijng 100191, PR China
Jun Gao
Affiliation:
School of Astronautics, Beihang University, Beijng 100191, PR China
Hu Sun
Affiliation:
School of Astronautics, Beihang University, Beijng 100191, PR China
Qiyou Liu
Affiliation:
School of Astronautics, Beihang University, Beijng 100191, PR China
Wentong Qiao
Affiliation:
School of Astronautics, Beihang University, Beijng 100191, PR China
Bingqiang Ji
Affiliation:
School of Astronautics, Beihang University, Beijng 100191, PR China
Dongdong He*
Affiliation:
School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang , Shenzhen, Guangdong 518172, PR China
Qingfei Fu*
Affiliation:
School of Astronautics, Beihang University, Beijng 100191, PR China
*
Corresponding authors: Dongdong He, hedongdong@cuhk.edu.cn; Qingfei Fu, fuqingfei@buaa.edu.cn
Corresponding authors: Dongdong He, hedongdong@cuhk.edu.cn; Qingfei Fu, fuqingfei@buaa.edu.cn

Abstract

Ionic surfactants are commonly employed to modify the rheological properties of fluids, particularly in terms of surface viscoelasticity. Concurrently, external electric fields can significantly impact the dynamics of liquid threads. A key question is how ionic surfactants affect the dynamic behaviour of threads in the presence of an electric field? To investigate this, a one-dimensional model of a liquid thread coated with surfactants within a radial electric field is established, employing the long-wave approximation. We systematically investigate the effects of dimensionless parameters associated with the surfactants, including surfactant concentration, dilatational Boussinesq number ${\textit{Bo}}_{\kappa \infty }$ and shear Boussinesq number ${\textit{Bo}}_{\mu \infty }$. The results indicate that increasing the surfactant concentration and the two Boussinesq numbers reduces both the maximum growth rate and the dominant wavenumber. In addition, both the electric field and surfactants mitigate the breakup of the liquid thread and the formation of satellite droplets. At low applied electric potentials, the surface viscosity induced by surfactants predominantly governs this suppression. Surface viscosity suppresses the formation of satellite droplets by maintaining the neck point at the centre of the liquid thread within a single disturbance wavelength. When the applied potential is high, the electric stress has two main effects: the external electric field exerts a normal pressure on the liquid thread surface, suppressing satellite droplet formation, while the internal electric field inhibits liquid drainage. Surface viscosity further stabilizes the system by suppressing flow dynamics during this process.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anna, S.L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48 (2016), 285309.10.1146/annurev-fluid-122414-034425CrossRefGoogle Scholar
Baygents, J.C. & Saville, D.A. 1991 Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans. 87, 18831898.10.1039/ft9918701883CrossRefGoogle Scholar
Borges, R., Carmona, M., Costa, B. & Don, W.S. 2008 An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227 (6), 31913211.10.1016/j.jcp.2007.11.038CrossRefGoogle Scholar
Boussinesq, M.J. 1913 Sur l’existence d’une viscosité seperficielle, dans la mince couche de transition séparant un liquide d’un autre fluide contigu. J. Ann. Chim. Phys. 29, 349357.Google Scholar
Campana, D.M., Ubal, S., Giavedoni, M.D. & Saita, F.A. 2011 A deeper insight into the dip coating process in the presence of insoluble surfactants: a numerical analysis. Phys. Fluids 23 (5), 052102.10.1063/1.3589346CrossRefGoogle Scholar
Champougny, L., Scheid, B., Restagno, F., Vermant, J. & Rio, E. 2015 Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films. Soft Matt. 11, 27582770.10.1039/C4SM02661FCrossRefGoogle ScholarPubMed
Chen, N., Gan, Y., Luo, Y. & Jiang, Z. 2022 A review on the technology development and fundamental research of electrospray combustion of liquid fuel at small-scale. Fuel Process. Technol. 234, 107342.10.1016/j.fuproc.2022.107342CrossRefGoogle Scholar
Cheng, J.-B., Liu, Q.-Y., Yang, L.-J., Ren, J.-X., Tang, H.-B., Fu, Q.-F. & Xie, L. 2024 Pulsation mechanism of a Taylor cone under a single pulse voltage. Phys. Rev. Fluids 9, 013701.10.1103/PhysRevFluids.9.013701CrossRefGoogle Scholar
Cheng, J.-B., Yang, L.-J., Fu, Q.-F., Ren, J.-X., Tang, H.-B., Sun, D.-K. & Sun, X.-F. 2022 Pulsating modes of a Taylor cone under an unsteady electric field. Phys. Fluids 34 (1), 012007.10.1063/5.0075250CrossRefGoogle Scholar
Collins, R.T., Harris, M.T. & Basaran, O.A. 2007 Breakup of electrified jets. J. Fluid Mech. 588, 75129.10.1017/S0022112007007409CrossRefGoogle Scholar
Conroy, D.T., Craster, R.V., Matar, O.K. & Papageorgiou, D.T. 2010 Dynamics and stability of an annular electrolyte film. J. Fluid Mech. 656, 481506.10.1017/S0022112010001254CrossRefGoogle Scholar
Conroy, D.T., Matar, O.K., Craster, R.V. & Papageorgiou, D.T. 2011 Breakup of an electrified viscous thread with charged surfactants. Phys. Fluids 23 (2), 022103.10.1063/1.3548841CrossRefGoogle Scholar
Craster, R.V., Matar, O.K. & Papageorgiou, D.T. 2002 Pinchoff and satellite formation in surfactant covered viscous threads. Phys. Fluids 14 (4), 13641376.10.1063/1.1449893CrossRefGoogle Scholar
Craster, R.V., Matar, O.K. & Papageorgiou, D.T. 2009 Breakup of surfactant-laden jets above the critical micelle concentration. J. Fluid Mech. 629, 195219.10.1017/S0022112009006533CrossRefGoogle Scholar
Datwani, S.S. & Stebe, K.J. 1999 The dynamic adsorption of charged amphiphiles: the evolution of the surface concentration, surface potential, and surface tension. J. Colloid Interface Sci. 219 (2), 282297.10.1006/jcis.1999.6494CrossRefGoogle ScholarPubMed
Dravid, V., Songsermpong, S., Xue, Z., Corvalan, C.M. & Sojka, P.E. 2006 Two-dimensional modeling of the effects of insoluble surfactant on the breakup of a liquid filament. Chem. Engng Sci. 61, 35773585.10.1016/j.ces.2005.12.026CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.10.1088/0034-4885/71/3/036601CrossRefGoogle Scholar
Eggers, J.G. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865930.10.1103/RevModPhys.69.865CrossRefGoogle Scholar
Elfring, G.J., Leal, L.G. & Squires, T.M. 2016 Surface viscosity and Marangoni stresses at surfactant laden interfaces. J. Fluid Mech. 792, 712739.10.1017/jfm.2016.96CrossRefGoogle Scholar
Fauvel, M., Trybala, A., Tseluiko, D., Starov, V.M. & Bandulasena, H.C.H. 2022 Stability of two-dimensional liquid foams under externally applied electric fields. Langmuir 38 (20), 63056321.10.1021/acs.langmuir.2c00026CrossRefGoogle ScholarPubMed
Gallardo, B.S., Gupta, V.K., Eagerton, F.D., Jong, L.I., Craig, V.S., Shah, R.R. & Abbott, N.L. 1999 Electrochemical principles for active control of liquids on submillimeter scales. Science 283 (5398), 5760.10.1126/science.283.5398.57CrossRefGoogle ScholarPubMed
Hameed, M. & Maldarelli, C. 2016 Effect of surfactant on the break-up of a liquid thread: modeling, computations and experiments. Intl J. Heat Mass Transfer 92, 303311.10.1016/j.ijheatmasstransfer.2015.08.090CrossRefGoogle Scholar
Hameed, M., Siegel, M., Young, Y.-N., Li, J., Booty, M.R. & Papageorgiou, D.T. 2008 Influence of insoluble surfactant on the deformation and breakup of a bubble or thread in a viscous fluid. J. Fluid Mech. 594, 307340.10.1017/S0022112007009032CrossRefGoogle Scholar
Herrada, M.A., Ponce-Torres, A., Rubio, M., Eggers, J. & Montanero, J.M. 2022 Stability and tip streaming of a surfactant-loaded drop in an extensional flow. Influence of surface viscosity. J. Fluid Mech. 934, A26.10.1017/jfm.2021.1118CrossRefGoogle Scholar
Hohman, M.M., Shin, M., Rutledge, G. & Brenner, M.P. 2001 a Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13 (8), 22012220.10.1063/1.1383791CrossRefGoogle Scholar
Hohman, M.M., Shin, M., Rutledge, G. & Brenner, M.P. 2001 b Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 13 (8), 22212236.10.1063/1.1384013CrossRefGoogle Scholar
Huebner, A.L. & Chu, H.N. 1971 Instability and breakup of charged liquid jets. J. Fluid Mech. 49 (2), 361372.10.1017/S002211207100212XCrossRefGoogle Scholar
Ismail, N.B., Maksoud, F.J., Ghaddar, N., Ghali, K.F. & Tehrani-Bagha, A.R. 2016 Simplified modeling of the electrospinning process from the stable jet region to the unstable region for predicting the final nanofiber diameter. J. Appl. Polym. Sci. 133 (43), 44112.10.1002/app.44112CrossRefGoogle Scholar
Joye, J.L., Hirasaki, G.J. & Miller, C.A. 1994 Asymmetric drainage in foam films. Langmuir 10, 31743179.10.1021/la00021a046CrossRefGoogle Scholar
Kamat, P.M., Wagoner, B.W., Thete, S.S. & Basaran, O.A. 2018 Role of marangoni stress during breakup of surfactant-covered liquid threads: reduced rates of thinning and microthread cascades. Phys. Rev. Fluids 3, 043602.10.1103/PhysRevFluids.3.043602CrossRefGoogle Scholar
Kas-Danouche, S.A., Papageorgiou, D.T. & Siegel, M. 2009 Nonlinear dynamics of core-annular film flows in the presence of surfactant. J. Fluid Mech. 626, 415448.10.1017/S0022112009006430CrossRefGoogle Scholar
Lakdawala, A.M., Sharma, A.K. & Thaokar, R.M. 2016 A dual grid level set method based study on similarity and difference between interface dynamics for surface tension and radial electric field induced jet breakup. Chem. Engng Sci. 148, 238255.10.1016/j.ces.2016.04.007CrossRefGoogle Scholar
Li, F. & He, D. 2023 Dynamics of a surfactant-laden viscoelastic thread in the presence of surface viscosity. J. Fluid Mech. 966, A35.10.1017/jfm.2023.456CrossRefGoogle Scholar
Li, F., Ke, S.-Y., Yin, X.-Y. & Yin, X.-Z. 2019 Effect of finite conductivity on the nonlinear behaviour of an electrically charged viscoelastic liquid jet. J. Fluid Mech. 874, 537.10.1017/jfm.2019.451CrossRefGoogle Scholar
López-Herrera, J.M., Gañán-Calvo, A.M., Popinet, S. & Herrada, M.A. 2015 Electrokinetic effects in the breakup of electrified jets: a volume-of-fluid numerical study. Intl J. Multiphase Flow 71, 1422.10.1016/j.ijmultiphaseflow.2014.12.005CrossRefGoogle Scholar
López-Herrera, J.M. & Gañán-Calvo, A.M. 2004 A note on charged capillary jet breakup of conducting liquids: experimental validation of a viscous one-dimensional model. J. Fluid Mech. 501, 303326.10.1017/S0022112003007560CrossRefGoogle Scholar
López-Herrera, J.M., Riesco-Chueca, P. & Gañán-Calvo, A.M. 2005 Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets. Phys. Fluids 17 (3), 034106.10.1063/1.1863285CrossRefGoogle Scholar
Martínez-Calvo, A. & Sevilla, A. 2020 Universal thinning of liquid filaments under dominant surface forces. Phys. Rev. Lett. 125, 114502.10.1103/PhysRevLett.125.114502CrossRefGoogle ScholarPubMed
Martínez-Calvo, A., Rivero-Rodríguez, J., Scheid, B. & Sevilla, A. 2020 Natural break-up and satellite formation regimes of surfactant-laden liquid threads. J. Fluid Mech. 883, A35.10.1017/jfm.2019.874CrossRefGoogle Scholar
Martínez-Calvo, A. & Sevilla, A. 2018 Temporal stability of free liquid threads with surface viscoelasticity. J. Fluid Mech. 846, 877901.10.1017/jfm.2018.293CrossRefGoogle Scholar
McGough, P.T. & Basaran, O.A. 2006 Repeated formation of fluid threads in breakup of a surfactant-covered jet. Phys. Rev. Lett. 96, 054502.10.1103/PhysRevLett.96.054502CrossRefGoogle ScholarPubMed
Mestel, A.J. 1996 Electrohydrodynamic stability of a highly viscous jet. J. Fluid Mech. 312, 311326.10.1017/S0022112096002029CrossRefGoogle Scholar
Milliken, W.J., Stone, H.A. & Leal, L.G. 1993 The effect of surfactant on the transient motion of Newtonian drops. Phys. Fluids A: Fluid Dyn. 5 (1), 6979.10.1063/1.858790CrossRefGoogle Scholar
Montanero, J.M. & Ganan-Calvo, A.M. 2020 Dripping, jetting and tip streaming. arXiv: 1909.02073.Google Scholar
Nie, Q., Li, F., Ma, Q., Fang, H. & Yin, Z. 2021 Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets. J. Fluid Mech. 925, A4.10.1017/jfm.2021.639CrossRefGoogle Scholar
Ozan, S.C. & Jakobsen, H.A. 2019 On the role of the surface rheology in film drainage between fluid particles. Intl J. Multiphase Flow 120, 103103.10.1016/j.ijmultiphaseflow.2019.103103CrossRefGoogle Scholar
Papageorgiu, D.T. 2002 Hydrodynamics of Surface Tension Dominated Flows, pp. 4188. Springer Vienna.Google Scholar
Ponce-Torres, A., Herrada, M.A., Montanero, J.M. & Vega, J.M. 2016 a Linear and nonlinear dynamics of an insoluble surfactant-laden liquid bridge. Phys. Fluids 28 (11), 112103.10.1063/1.4967289CrossRefGoogle Scholar
Ponce-Torres, A., Montanero, J.M., Herrada, M.A., Vega, E.J. & Vega, J.M. 2017 Influence of the surface viscosity on the breakup of a surfactant-laden drop. Phys. Rev. Lett. 118, 024501.10.1103/PhysRevLett.118.024501CrossRefGoogle ScholarPubMed
Ponce-Torres, A., Rubio, M., Herrada, M.A., Eggers, J. & Montanero, J.M. 2020 Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Sci. Rep. UK 10, 16065.10.1038/s41598-020-73007-1CrossRefGoogle ScholarPubMed
Ponce-Torres, A., Vega, E.J. & Montanero, J.M. 2016 b Effects of surface-active impurities on the liquid bridge dynamics. Exp. Fluids 57, 112.10.1007/s00348-016-2152-6CrossRefGoogle Scholar
Prosser, A.J. & Franses, E.I. 2001 Adsorption and surface tension of ionic surfactants at the air-water interface: review and evaluation of equilibrium models. Colloids Surf. A: Physicochem. Engng Aspects 178, 140.10.1016/S0927-7757(00)00706-8CrossRefGoogle Scholar
Quéré, D., de Ryck, A. 1998 Le mouillage dynamique des fibres. Ann. Phys. PARIS 23, 1149.10.1051/anphys:199801001CrossRefGoogle Scholar
Rayleigh, L. 1878 On the instability of jets. Proc. Lond. Math. Soc. s1-10 (1), 413.10.1112/plms/s1-10.1.4CrossRefGoogle Scholar
Reneker, D.H., Yarin, A.L., Fong, H. & Koombhongse, S. 2000 Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87 (9), 45314547.10.1063/1.373532CrossRefGoogle Scholar
Rodríguez-Rodríguez, J., Sevilla, A., Martínez-Bazán, C. & Gordillo, J.M. 2015 Generation of microbubbles with applications to industry and medicine. Annu. Rev. Fluid Mech. 47 (2015), 405429.10.1146/annurev-fluid-010814-014658CrossRefGoogle Scholar
Saville, D.A. 1971 a Electrohydrodynamic stability: effects of charge relaxation at the interface of a liquid jet. J. Fluid Mech. 48 (4), 815827.10.1017/S0022112071001873CrossRefGoogle Scholar
Saville, D.A. 1971 b Stability of electrically charged viscous cylinders. Phys. Fluids 14 (6), 10951099.10.1063/1.1693569CrossRefGoogle Scholar
Saville, D.A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1997), 2764.10.1146/annurev.fluid.29.1.27CrossRefGoogle Scholar
Scheid, B., Delacotte, J., Dollet, B., Rio, E., Restagno, F., van Nierop, E.A., Cantat, I., Langevin, D. & Stone, H.A. 2010 The role of surface rheology in liquid film formation. Europhys. Lett. 90 (2), 24002.10.1209/0295-5075/90/24002CrossRefGoogle Scholar
Scheid, B., Dorbolo, S., Arriaga, L.R. & Rio, E. 2012 Antibubble dynamics: the drainage of an air film with viscous interfaces. Phys. Rev. Lett. 109, 264502.10.1103/PhysRevLett.109.264502CrossRefGoogle ScholarPubMed
Scriven, L.Edward & Sternling, C.V. 1960 The marangoni effects. Nature 187, 186188.10.1038/187186a0CrossRefGoogle Scholar
Seiwert, J., Dollet, B. & Cantat, I. 2014 Theoretical study of the generation of soap films: role of interfacial visco-elasticity. J. Fluid Mech. 739, 124142.10.1017/jfm.2013.625CrossRefGoogle Scholar
Stone, H.A. & Leal, L.G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.10.1017/S0022112090003226CrossRefGoogle Scholar
Sweet, R.G. 1965 High frequency recording with electrostatically deflected ink jets. Rev. Sci. Instrum. 36 (2), 131136.10.1063/1.1719502CrossRefGoogle Scholar
Timmermans, M.-L.E. & Lister, J.R. 2002 The effect of surfactant on the stability of a liquid thread. J. Fluid Mech. 459, 289306.10.1017/S0022112002008224CrossRefGoogle Scholar
Wang, Q. 2012 Breakup of a poorly conducting liquid thread subject to a radial electric field at zero Reynolds number. Phys. Fluids 24 (10), 102102.10.1063/1.4757388CrossRefGoogle Scholar
Wang, Q., Mählmann, S. & Papageorgiou, D.T. 2009 Dynamics of liquid jets and threads under the action of radial electric fields: microthread formation and touchdown singularities. Phys. Fluids 21 (3), 032109.10.1063/1.3097888CrossRefGoogle Scholar
Wang, Q. & Papageorgiou, D.T. 2011 Dynamics of a viscous thread surrounded by another viscous fluid in a cylindrical tube under the action of a radial electric field: breakup and touchdown singularities. J. Fluid Mech. 683, 2756.10.1017/jfm.2011.247CrossRefGoogle Scholar
Wang, Y., Hashimoto, T., Li, C.-C., Li, Y.-C. & Wang, C. 2018 Extension rate of the straight jet in electrospinning of poly(n-isopropyl acrylamide) solutions in dimethylformamide: influences of flow rate and applied voltage. J. Polym. Sci. B: Polym. Phys. 56 (4), 319329.10.1002/polb.24544CrossRefGoogle Scholar
Wee, H., Wagoner, B.W. & Basaran, O.A. 2022 Absence of scaling transitions in breakup of liquid jets caused by surface viscosity. Phys. Rev. Fluids 7, 074001.10.1103/PhysRevFluids.7.074001CrossRefGoogle Scholar
Wee, H., Wagoner, B.W., Garg, V., Kamat, P.M. & Basaran, O.A. 2021 Pinch-off of a surfactant-covered jet. J. Fluid Mech. 908, A38.10.1017/jfm.2020.801CrossRefGoogle Scholar
Wee, H., Wagoner, B.W., Kamat, P.M. & Basaran, O.A. 2020 Effects of surface viscosity on breakup of viscous threads. Phys. Rev. Lett. 124, 204501.10.1103/PhysRevLett.124.204501CrossRefGoogle ScholarPubMed
Wodlei, F., Sebilleau, J., Magnaudet, J. & Pimienta, V. 2018 Marangoni-driven flower-like patterning of an evaporating drop spreading on a liquid substrate. Nat. Commun. 9, 820.10.1038/s41467-018-03201-3CrossRefGoogle ScholarPubMed
Yao, M., Yang, L. & Fu, Q. 2021 Temporal instability of surfactant-laden compound jets with surface viscoelasticity. Eur. J. Mech. B/Fluids 89, 191202.10.1016/j.euromechflu.2021.05.009CrossRefGoogle Scholar