Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T13:01:07.721Z Has data issue: false hasContentIssue false

The nonlinear evolution of rotating configurations of uniform vorticity

Published online by Cambridge University Press:  21 April 2006

David G. Dritschel
Affiliation:
Geophysical Fluid Dynamics Program, Princeton University, Princeton, NJ 08540, USA Present affiliation: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, UK.

Abstract

The nonlinear evolution of perturbed equilibrium configurations of constant-vorticity vortices is calculated. To illustrate a variety of nonlinear behaviour, we consider the following relatively simple configurations: the corotating configurations of N vortices whose linear stability has been treated in a previous study; the elliptical vortex; and the annular vortex. Our calculations test for nonlinear stability as well as categorize the possible forms of stability and instability. The energy ideas announced in the previous study are found to greatly constrain vortex evolution. In particular, we show that two vortices and an elliptical vortex may evolve into each other, and that an annular vortex may break cleanly into five co-rotating vortices.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun I. A.1965 Handbook of Mathematical Functions. Dover.
Agee E. M., Snow J. T., Nickerson F. S., Clare P. R., Church, C. R. & Schaal L. A.1977 An observational study of the West Lafayette, Indiana, tornado of 20 March 1976. Mon. Wea. Rev. 105, 893907.Google Scholar
Benjamin, T. N. & Olver P. J.1982 Hamiltonian structure, symmetries, and conservation laws for water waves. J. Fluid Mech. 125, 137185.Google Scholar
Childress S.1984 A vortex-tube model of eddies in the inertial range. Geophys. Astrophys. Fluid Dyn. 29, 2964.Google Scholar
Christiansen J. P.1973 Numerical simulation of hydrodynamics by the method of point vortices. J. Comp. Phys. 13, 363379.Google Scholar
Chrisiansen, J. P. & Zabusky N. J.1973 Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 61, 219243.Google Scholar
Deem, G. S. & Zabusky N. J.1978a Vortex waves: stationary V-states, interactions, recurrence, and breaking Phys. Rev. Lett., 40, 859862.Google Scholar
Deem, G. S. & Zabusky N. J. 1978b Stationary V-states, interactions, recurrence, and breaking. In Solitons in Action (ed. K. Longren & A. Scott), pp. 277293. Academic.
Dritschel D. G.1985 The stability and energetics of corotating uniform vortices. J. Fluid Mech. 157, 95134.Google Scholar
Dritschel D. G.1986 The stability of vortices in near solid-body rotation. J. Fluid Mech. (submitted).Google Scholar
Fujita T. T.1970 The Lubbock tornadoes: a study in suction spots. Weatherwise 23, 160173.Google Scholar
Kirchhoff G.1876 Vorlesungen über mathematische Physik. Leipzig: Mechanik.
Love A. E. H.1893 On the stability of certain vortex motions. Proc. Lond. Math. Soc. 35, 18.Google Scholar
Lundgren T. S.1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 21933005.Google Scholar
Mcintyre, M. E. & Palmer T. N.1984 The ‘surfzone’ in the stratosphere. J. Atmos. Terr. Phys. 46, 825850.Google Scholar
Marsden J. E.1985 Nonlinear stability in fluids and plasmas. Preprint, University of California, Berkley.
Meiron D. I., Saffmann, P. G. & Schatzman J. C.1984 The linear two-dimensional stability of inviscid vortex streets of finite-cored vortices. J. Fluid Mech. 147, 187212.Google Scholar
Melander M. V., McWilliams, J. C. & Zabusky N. J.1986 Circularization and vorticity-gradient intensification of an isolated 2D-vortex. Preprint.
Michalke, A. & Timme A.1967 On the inviscid stability of certain two-dimensional vortex-type flows. J. Fluid Mech. 29, 647666.Google Scholar
Moore, D. W. & Griffith-Jones R.1974 The stability of an expanding circular vortex sheet. Mathematika 21, 128.Google Scholar
Overman, E. A. & Zabusky N. J.1982 Evolution and merger of isolated vortex structures. Phys. Fluids 25, 12971305.Google Scholar
Pierrehumbert R. T.1980 A family of steady, translating vortex pairs with distributed vorticity. J. Fluid Mech. 99, 129144.Google Scholar
Pierrehumbert, R. T. & Widnall S. E.1981 The structure of organized vortices in a free shear layer. J. Fluid Mech. 102, 301313.Google Scholar
Saffman, P. G. & Baker G. R.1979 Vortex interactions. Ann. Rev. Fluid Mech. 11, 95122.Google Scholar
Saffman, P. G. & Schatzman J. C.1982 Stability of a vortex street of finite vortices. J. Fluid Mech. 117, 171185.Google Scholar
Saffman, P. G. & Szeto R.1980 Equilibrium shapes of a pair of uniform vortices. Phys. Fluids 23, 23392342.Google Scholar
Snow J. T.1978 On inertial instability as related to the multiple-vortex phenomenon. J. Atmos. Sci. 35, 16601667.Google Scholar
Tang Y.1984 Nonlinear stability of vortex patches. Dissertion submitted to the State University of New York at Buffalo.
Wan, Y. H. & Pulvirenti M.1985 Nonlinear stability of circular vortex patches. Commun. Math. Phys. 99, 435450.Google Scholar
Wu H. M., Overman, E. A. & Zabusky N. J.1984 Steady-state solutions of the Euler equations in two dimensions: rotating and translating V-states with limiting cases. I. Numerical algorithms and results. J. Comp. Phys. 53, 4271.Google Scholar
Zabusky N. J.1981 Recent developments in contour dynamics for the Euler equations in two dimensions. Ann. N. Y. Acad. Sci. 373, 160170.Google Scholar
Zabusky N. J., Hughes, M. H. & Roberts K. V.1979 Contour dynamics for the Euler equations in two dimensions. J. Comp. Phys. 30, 96106.Google Scholar