Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T23:02:23.736Z Has data issue: false hasContentIssue false

Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder

Published online by Cambridge University Press:  21 April 2006

M. Braza
Affiliation:
Institut de Mécanique des Fluides, Laboratoire associé au C.N.R.S., 2 rue Camichel, 31071 Toulouse Cedex, France
P. Chassaing
Affiliation:
Institut de Mécanique des Fluides, Laboratoire associé au C.N.R.S., 2 rue Camichel, 31071 Toulouse Cedex, France
H. Ha Minh
Affiliation:
Institut de Mécanique des Fluides, Laboratoire associé au C.N.R.S., 2 rue Camichel, 31071 Toulouse Cedex, France

Abstract

The dynamic characteristics of the pressure and velocity fields of the unsteady incompressible laminar wake behind a circular cylinder are investigated numerically and analysed physically. The governing equations, written in a velocity—pressure formulation and in conservative form, are solved by a predictor—corrector pressure method, a finite-volume second-order-accurate scheme and an alternating-direction-implicit (ADI) procedure. The initiation mechanism for vortex shedding and the evaluation of the unsteady body forces are presented for Reynolds-number values of 100, 200 and 1000.

The vortex shedding is generated by a physical perturbation imposed numerically for a short time. The flow transition becomes periodic after a transient time interval. The frequency of the drag and lift oscillations agree well with the experimental data.

The study of the interactions of the unsteady pressure and velocity fields shows the phase relations between the pressure and velocity, and the influence of different factors: the strongly rotational viscous region, the convection of the eddies and the almost inviscid flow.

The interactions among the different scales of structures in the near wake are also studied, and in particular the time-dependent evolution of the secondary eddies in relation to the fully developed primary ones is analysed.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acbivos, A., Snowden, D., Grove, A. S. & Petersen, E. E. 1965 J. Fluid Mech. 21, 737.
Amsden, A. A. & Harlow, F. H. 1970 Los Alamos Scientific Rep. No. La-4370.
Batchelorv, G. K. (ed.) 1960 The Collected Works of G. I. Taylor, vol. 2. Cambridge University Press.
Boisson, H. C., Chassaing, P. & Ha Minh, H. 1983 Phys. Fluids 26, 653.
Bouard, R. & Coutanceau, M. 1980 J. Fluid Mech. 101, 583.
Braza, M. 1981 These Docteur-Ingénieur, I.N.P. Toulouse.
Camichel, C. 1931 Rapports sur les travaux effectivés pendant les années 1930 et 1931. Privat Editeur.
Cazalbou, J. B. 1983 These Docteur-Ingénieur, I.N.P. Toulouse.
Chorin, A. J. 1968 Math. Comput. 22, 745.
Chorin, A. J. 1973 J. Fluid Mech. 57, 785.
Coutanceau, M. & Bouard, R. 1977a J. Fluid Mech. 79, 231.
Coutanceau, M. & Bouard, R. 1977b J. Fluid Mech. 79, 257.
Crausse, E. 1936 These Doctorat-és-Sciences, Université de Toulouse.
Daube, O. & Ta Phtjoc Loc 1978 J. Méc. 17, 651.
Dennis, S. C. R. & Chang, G.-Z. 1970 J. Fluid Mech. 42, 471.
Douglas, J. 1955 J. Soc. Indust. Appl. Math. 3, 42.
Fornberg, B. 1980 J. Fluid Mech. 98, 819.
Grove, A. S., Shair, F. H., Petersen, E. E. & Acrivos, A. 1964 J. Fluid Mech. 19, 60.
Hamielec, A. E. & Raal, J. D. 1969 Phys. Fluids 12, 11.
Ha Minh, H., Boisson, H. C. & Martinez, G. 1980 Trans. ASMS C: J. Heat Transfer 13, 35.
Harlow, F. H. & Welch, J. E. 1965 Phys. Fluids 8, 2182.
Honji, H. & Taneda, S. 1969 J. Phys. Soc. Japan 27, 1668.
Jain, P. C. & Rao, K. S. 1969 Phys. Fluids Suppl. (II) 12, 57.
Jordan, S. K. & Fromm, J. E. 1972 Phys. Fluids 15, 371.
Kármán, T. Von 1911 Phys. Z. xiii, 49.
Kovasznay, L. S. G. 1949 Proc. R. Soc. Lond. A 198, 174.
Lilley, D. G. 1976 AIAA J. 14, 749.
Lin, C., Pepper, D. & Lee, S. 1976 AIAA J. 7, 900.
Martinez, G. 1979 Thèse Docteur-Ingénieur, I.N.P. Toulouse.
Martinez, G. & Ha Minh, H. 1978 InProc. Intl. Conf. on Numerical Methods in Laminar and Turbulent Flow, Swansea. Pineridge.
Peaceman, D. W. & Rachford, H. H. 1955 J. Soc. Indust. Appl. Math. 3, 28.
Roshko, A. 1953 NACA Tech. Note. No. 2913.
Roshko, A. 1954 NACA Rep. No. 1191.
Sears, W. & Telionis, D. P. 1975 S1AM J. Appl. Math. 28, 215.
Son, J. S. & Hanratty, T. J. 1969 J. Fluid Mech. 35, 369.
Spalart, P. R., Leonard, A. & Baganoff, D. 1983 NASA Tech. Mem. 84328.
Taneda, S. 1972 Recent Research on Unsteady Boundary Layers, Vol. 2 (ed. E. A. Eichelbrenner). Quebec Laval University Press.
Ta Phuoc Loc 1980 J. Fluid Mech. 100, 111.
Teissie-Solier, M. 1931 Thèse Doctorat-ès-Sciences, Université de Toulouse.
Thoman, D. C. & Szewczyk, A. A. 1969 Phys. Fluids, Suppl (II) 12, 76.
Tritton, D. J. 1971 J. Fluid Mech. 45, 203.
Tritton, D. J. 1959 J. Fluid Mech. 6, 547.
Tuann, S. Y. & Olson, M. D. 1978 Computers and Fluids 6, 219.
Van Dyke 1982 An Album of Fluid Motion. Parabolic.
Wachspress, E. L. 1964 Iterative Solution of Elliptic Systems. Prentice Hall.
Wieselsberger, V. C. 1921 Physik. Z. 22, 321.