Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-24T13:55:52.378Z Has data issue: false hasContentIssue false

On latency of multiple zonal jets in the oceans

Published online by Cambridge University Press:  27 September 2011

P. Berloff*
Department of Mathematics, Grantham Institute for Climate Change, Imperial College London, London SW7 2AZ, UK
S. Karabasov
Department of Engineering, Whittle Laboratory, University of Cambridge, Cambridge CB3 0DY, UK
J. T. Farrar
Physical Oceanography Department, Woods Hole Oceanographic Institution, MA 02543, USA
I. Kamenkovich
RSMAS, University of Miami, FL 33149, USA
Email address for correspondence:


Most of the nearly zonal, multiple, alternating jets observed in the oceans are latent, that is, their amplitudes are weak relative to the ambient mesoscale eddies. Yet, relatively strong jets are often observed in dynamical simulations. To explore mechanisms controlling the degree of latency, we analyse solutions of an idealized, eddy-resolving and flat-bottom quasigeostrophic model, in which dynamically generated mesoscale eddies maintain and interact with a set of multiple zonal jets. We find that the degree of the latency is controlled primarily by the bottom friction: the larger the friction parameter, the more latent are the jets; and the degree of the latency is substantial for a realistic range of the oceanic bottom friction coefficient. This result not only provides a plausible explanation for the latency of the oceanic jets, but it may also be relevant to the prominent atmospheric multiple jets observed on giant gas planets, such as Jupiter. We hypothesize that these jets can be so strong because of the relative absence of the bottom friction. The mechanism controlling the latency in our solutions is understood in terms of the changes induced in the linear eigenmodes of the time–mean flow by varying the bottom friction coefficient; these changes, in turn, affect and modify the jets. Effects of large Reynolds numbers on the eddies, jets, and the latency are also discussed.

Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Arbic, B. & Flierl, G. 2004 Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: application to midocean eddies. J. Phys. Oceanogr. 34, 22572273.2.0.CO;2>CrossRefGoogle Scholar
2. Arbic, B. & Scott, R. 2008 On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies. J. Phys. Oceanogr. 38, 84103.CrossRefGoogle Scholar
3. Baldwin, M., Rhines, P., Huang, H.-P. & McIntyre, M. 2007 The jet-stream conundrum. Science 315, 467468.CrossRefGoogle ScholarPubMed
4. Balk, A., Nazarenko, S. & Zakharov, V. 1990 On the nonlocal turbulence of drift type waves. Phys. Rev. Lett. A 146, 217221.CrossRefGoogle Scholar
5. Barnier, B., Hua, B. L. & Le Provost, C. 1991 On the catalytic role of high baroclinic modes in eddy-driven large-scale circulations. J. Phys. Oceanogr. 21, 976997.2.0.CO;2>CrossRefGoogle Scholar
6. Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009a A model of multiple zonal jets in the oceans: dynamical and kinematical analysis. J. Phys. Oceanogr. 39, 27112734.CrossRefGoogle Scholar
7. Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009b A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.CrossRefGoogle Scholar
8. Beron-Vera, F., Olascoaga, M., Brown, M., Kocak, H. & Rypina, I. 2010 Invariant-tori-like coherent structures in geophysical flows. Chaos 20, 017514.CrossRefGoogle ScholarPubMed
9. Buckingham, C., Cornillon, P. & Obenour, K. 2011 Zonal bands observed in microwave SST front probability. J. Geophys. Res. (submitted).Google Scholar
10. Chekhlov, A., Orszag, S., Sukoriansky, S., Galperin, B. & Staroselsky, I. 1996 The effect of small-scale forcing on large-scale structures in two-dimensional flows. Physica D 98, 321334.CrossRefGoogle Scholar
11. Chelton, D., Schlax, M. & Samelson, R. 2011 Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167216.CrossRefGoogle Scholar
12. Connaughton, C., Nadiga, B., Nazarenko, S. & Quinn, B. 2010 Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech. 654, 207231.CrossRefGoogle Scholar
13. Danilov, S. & Gurarie, D. 2004 Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids 16, 25922603.CrossRefGoogle Scholar
14. Danilov, S. & Gryanik, V. 2004 Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci. 61, 22832295.2.0.CO;2>CrossRefGoogle Scholar
15. Dewar, W. 1998 Topography and barotropic transport control by bottom friction. J. Mar. Res. 56, 295328.CrossRefGoogle Scholar
16. Dritschel, D. & McIntyre, M. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.CrossRefGoogle Scholar
17. Dritschel, D. & Scott, R. 2011 Jet sharpening by turbulent mixing. Phil. Trans. R. Soc. A 369, 754770.CrossRefGoogle ScholarPubMed
18. Farrell, B. & Ioannou, P. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523665.CrossRefGoogle Scholar
19. Farrell, B. & Ioannou, P. 2008 Formation of jets by baroclinic turbulence. J. Atmos. Sci. 65, 33533375.CrossRefGoogle Scholar
20. Farrell, B. & Ioannou, P. 2009 Emergence of jets from turbulence in the shallow-water equations on an equatorial beta plane. J. Atmos. Sci. 66, 31973207.CrossRefGoogle Scholar
21. Fureby, C. & Grinstein, F. 2002 Large eddy simulation of high-Reynolds-number free and wall-bounded flows. J. Comput. Phys. 181, 6897.CrossRefGoogle Scholar
22. Galperin, B., Nakano, H., Huang, H. & Sukoriansky, S. 2004 The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett. 31, L13303.CrossRefGoogle Scholar
23. Galperin, B., Sukoriansky, S. & Dikovskaya, N. 2010 Geophysical flows with anisotropic turbulence and dispersive waves: flows with a beta-effect. Ocean Dyn. 60, 427441.CrossRefGoogle Scholar
24. Goloviznin, V., Glotov, V., Danilin, A., Korotkin, I. & Karabasov, S. 2011 Computational modelling of incompressible flows in multiple dimensions with the CABARET method. In Basic Problems of Multiphase and Turbulent Flows. Nauka (in press).Google Scholar
25. Haidvogel, D. & Held, I. 1980 Homogeneous quasi-geostrophic turbulence driven by a uniform temperature gradient. J. Atmos. Sci. 37, 26442660.2.0.CO;2>CrossRefGoogle Scholar
26. Herbei, R., McKeague, I. & Speer, K. 2008 Gyres and jets: inversion of tracer data for ocean circulation structure. J. Phys. Oceanogr. 38, 11801202.CrossRefGoogle Scholar
27. Hogg, N. & Owens, B. 1999 Direct measurement of the deep circulation within the Brazil basin. Deep-Sea Res. 46, 335353.Google Scholar
28. Hristova, H., Pedlosky, J. & Spall, M. 2008 Radiating instability of a meridional boundary current. J. Phys. Oceanogr. 38, 22942307.CrossRefGoogle Scholar
29. Huang, H.-P., Kaplan, A., Curchitser, E. & Maximenko, N. 2007 The degree of anisotropy for mid-ocean currents from satellite observations and an eddy-permitting model simulation. J. Geophys. Res. 112, C09005.CrossRefGoogle Scholar
30. Huang, H.-P. & Robinson, W. 1998 Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci. 55, 611632.2.0.CO;2>CrossRefGoogle Scholar
31. Hughes, C., Thompson, A. & Wilson, C. 2010 Identification of jets and mixing barriers from sea level and vorticity measurements using simple statistics. Ocean Model. 32, 4457.CrossRefGoogle Scholar
32. Ivanov, L., Collins, C. & Margolina, T. 2008 System of quasi-zonal jets off California revealed from satellite altimetry. Geophys. Res. Lett. 36, L03609.Google Scholar
33. Kamenkovich, I., Berloff, P. & Pedlosky, J. 2009a Role of eddy forcing in the dynamics of multiple zonal jets in the North Atlantic. J. Phys. Oceanogr. 39, 13611379.CrossRefGoogle Scholar
34. Kamenkovich, I., Berloff, P. & Pedlosky, J. 2009b Anisotropic material transport by eddies and eddy-driven currents in the North Atlantic. J. Phys. Oceanogr. 39, 31623175.CrossRefGoogle Scholar
35. Karabasov, S., Berloff, P. & Goloviznin, V. 2009 CABARET in the ocean gyres. Ocean Model. 30, 155168.CrossRefGoogle Scholar
36. Karabasov, S. & Goloviznin, V. 2009 Compact accurately boundary adjusting high-resolution technique for fluid dynamics. J. Comput. Phys. 228, 74267451.CrossRefGoogle Scholar
37. Kaspi, I. & Flierl, G. 2007 Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci. 64, 31773194.CrossRefGoogle Scholar
38. Kondratyev, K. & Hunt, G. 1982 Weather and Climate on Planets. Pergamon.Google Scholar
39. Lee, S. 1997 Maintenance of multiple jets in a baroclinic flow. J. Atmos. Sci. 54, 17261738.2.0.CO;2>CrossRefGoogle Scholar
40. Levy, M., Klein, P., Treguier, A.-M., Iovino, D., Madec, G., Masson, S. & Takahashi, K. 2010 Modifications of gyre circulation by sub-mesoscale physics. Ocean Model. 34, 115.CrossRefGoogle Scholar
41. Liu, J. & Schneider, T. 2011 Mechanisms of jet formation on the giant planets. J. Atmos. Sci. 67, 36523672.CrossRefGoogle Scholar
42. Manfroi, A. & Young, W. 2002 Stability of -plane Kolmogorov flow. Physica D 162, 208232.CrossRefGoogle Scholar
43. Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.2.0.CO;2>CrossRefGoogle Scholar
44. Marie, L. 2010 A study of the phase instability of quasi-geostrophic Rossby waves on the infinite beta-plane to zonal flow perturbations. Nonlinear Process. Geophys. 17, 4963.CrossRefGoogle Scholar
45. Marshall, J., Shuckburgh, E., Jones, H. & Hill, C. 2006 Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J. Phys. Oceanogr. 36, 18061821.CrossRefGoogle Scholar
46. Maximenko, N., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32, L12607.CrossRefGoogle Scholar
47. Maximenko, N., Melnichenko, O., Niiler, P. & Sasaki, H. 2008 Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett. 35, L08603.CrossRefGoogle Scholar
48. McIntyre, M. 1982 How well do we understand the dynamics of stratospheric warmings? J. Met. Soc. Japan 60, 3765.CrossRefGoogle Scholar
49. McWilliams, J. 1977 A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans 1, 427441.CrossRefGoogle Scholar
50. McWilliams, J. & Flierl, G. 1979 On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr. 9, 11551182.2.0.CO;2>CrossRefGoogle Scholar
51. Melnichenko, O., Maximenko, N., Schneider, N. & Sasaki, H. 2010 Quasi-stationary striations in basin-scale oceanic circulation: vorticity balance from observations and eddy-resolving model. Ocean Dyn. 60, 653666.CrossRefGoogle Scholar
52. Muller, P. 1976 On the diffusion of momentum and mass by internal gravity waves. J. Fluid Mech. 77, 789823.Google Scholar
53. Nakano, H. & Hasumi, H. 2005 A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr. 35, 474488.CrossRefGoogle Scholar
54. Ollitrault, M., Lankhorst, M., Fratantoni, D. & Richardson, P. 2006 Zonal intermediate currents in the equatorial Atlantic Ocean. Geophys. Res. Lett. 33, L05605.CrossRefGoogle Scholar
55. Panetta, L. 1993 Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 50, 20732106.2.0.CO;2>CrossRefGoogle Scholar
56. Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
57. Qiu, B., Scott, R. & Chen, S. 2008 Length scales of eddy generation and nonlinear evolution of the seasonally-modulated South Pacific subtropical countercurrent. J. Phys. Oceanogr. 38, 15151528.CrossRefGoogle Scholar
58. Radko, T. 2011 On the generation of large-scale structures in a homogeneous eddy field. J. Fluid Mech. 668, 7699.CrossRefGoogle Scholar
59. Read, P., Yamazaki, Y., Lewis, S., Williams, P., Wordsworth, R., Miki-Yamazaki, K., Sommeria, J., Didelle, H. & Fincham, A. 2007 Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci. 64, 40314052.CrossRefGoogle Scholar
60. Rhines, P. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417443.CrossRefGoogle Scholar
61. Rhines, P. 1994 Jets. Chaos 4, 313339.CrossRefGoogle ScholarPubMed
62. Richards, K., Maximenko, N., Bryan, F. & Sasaki, H. 2006 Zonal jets in the Pacific ocean. Geophys. Res. Lett. 33, L03605.CrossRefGoogle Scholar
63. Riviere, P., Treguier, A. & Klein, P. 2004 Effects of bottom friction on nonlinear equilibration of an oceanic baroclinic jet. J. Phys. Oceanogr. 34, 416432.2.0.CO;2>CrossRefGoogle Scholar
64. Schlax, M. & Chelton, D. 2008 The influence of mesoscale eddies on the detection of quasi-zonal jets in the ocean. Geophys. Res. Lett. 35, L24602.CrossRefGoogle Scholar
65. van Sebille, E., Kamenkovich, I. & Willis, J. 2011 Quasi-zonal jets in 3D Argo data of the northeast Atlantic. Geophys. Res. Lett. 38, L02606.CrossRefGoogle Scholar
66. Sinha, B. & Richards, K. 1999 Jet structure and scaling in Southern Ocean models. J. Phys. Oceanogr. 29, 11431155.2.0.CO;2>CrossRefGoogle Scholar
67. Smith, K. 2004 A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sci. 61, 14201433.2.0.CO;2>CrossRefGoogle Scholar
68. Sokolov, S. & Rintoul, S. 2007a Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr. 37, 13941412.CrossRefGoogle Scholar
69. Sokolov, S. & Rintoul, S. 2007b On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res. 112, C07030.CrossRefGoogle Scholar
70. Sokolov, S. & Rintoul, S. 2009 Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts. Part 1. Mean circumpolar paths. J. Geophys. Res. 114, C11018.Google Scholar
71. Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2007 On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64, 33123327.CrossRefGoogle Scholar
72. Swarztrauber, P. 1977 The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19, 490501.CrossRefGoogle Scholar
73. Theiss, J. 2004 Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Oceanogr. 34, 16631678.2.0.CO;2>CrossRefGoogle Scholar
74. Thompson, A. 2010 Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr. 40, 257278.CrossRefGoogle Scholar
75. Thompson, A. & Young, W. 2007 Baroclinic eddy heat fluxes: zonal flows and energy balance. J. Atmos. Sci. 64, 32143231.CrossRefGoogle Scholar
76. Treguier, A. & Panetta, L. 1994 Multiple zonal jets in a quasigeostrophic model of the Antarctic Circumpolar Current. J. Phys. Oceanogr. 24, 22632277.2.0.CO;2>CrossRefGoogle Scholar
77. Vallis, G. & Maltrud, M. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 13461362.2.0.CO;2>CrossRefGoogle Scholar
78. Wallcraft, A., Birol Kara, A. & Hurlburt, H. 2005 Convergence of Laplacian diffusion versus resolution of an ocean model. Geophys. Res. Lett. 32, L07604.CrossRefGoogle Scholar
79. Williams, G. 1978 Planetary circulations. Part 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 13991426.2.0.CO;2>CrossRefGoogle Scholar
80. Yoo, C. & Lee, S. 2010 Persistent multiple jets and PV staircase. J. Atmos. Sci. 67, 22792295.CrossRefGoogle Scholar