No CrossRef data available.
Published online by Cambridge University Press: 23 June 2025
This study investigates noise generation from co-rotating rotors arranged in a side-by-side configuration. The analysis examines the effects of different phase delays and separation distances. A simple mathematical model is developed to provide insight into constructive and destructive noise interference. An experimental campaign was carried out to validate the proposed analytical model. Furthermore, the study introduces a space–time proper orthogonal decomposition technique to separate broadband and tonal components. Subsequently, wavelet analysis is applied to the tonal component, revealing a transition to chaos via intermittency, characterised by the local birth and decay of periodic oscillations. This phenomenon highlights the intricate and fascinating chaotic nature of interference transitions. The chaotic behaviour of the tonal component is related to the macro time scale of pressure fluctuations, and has been incorporated into the mathematical model. This model has several applications, including its potential use in the development of active control systems and the design of quieter distributed propulsion systems.