Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-12T05:39:07.518Z Has data issue: false hasContentIssue false

On the formation of three-dimensional separated flows over wings under tip effects

Published online by Cambridge University Press:  15 May 2020

Kai Zhang*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA90095, USA Department of Mechanical Engineering, Florida State University, Tallahassee, FL32310, USA
Shelby Hayostek
Affiliation:
Department of Mechanical, Aeronautical, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY12180, USA
Michael Amitay
Affiliation:
Department of Mechanical, Aeronautical, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY12180, USA
Wei He
Affiliation:
Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Brownlow Hill, LiverpoolL69 3GH, UK
Vassilios Theofilis
Affiliation:
Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Brownlow Hill, LiverpoolL69 3GH, UK Escola Politecnica, Universidade São Paulo, Avda. Prof. Mello Moraes 2231, CEP 5508-900, São Paulo-SP, Brasil
Kunihiko Taira
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA90095, USA Department of Mechanical Engineering, Florida State University, Tallahassee, FL32310, USA
*
Email address for correspondence: kzhang3@ucla.edu

Abstract

We perform direct numerical simulations of flows over unswept finite-aspect-ratio NACA 0015 wings at $Re=400$ over a range of angles of attack (from $0^{\circ }$ to $30^{\circ }$) and (semi) aspect ratios (from 1 to 6) to characterize the tip effects on separation and wake dynamics. This study focuses on the development of three-dimensional separated flow over the wing. We discuss the flow structures formed on the wing surface as well as in the far-field wake. Vorticity is introduced from the wing surface into the flow in a predominantly two-dimensional manner. The vortex sheet from the wing tip rolls up around the free end to form the tip vortex. At its inception, the tip vortex is weak and its effect is spatially confined. As the flow around the tip separates, the tip effects extend farther in the spanwise direction, generating noticeable three dimensionality in the wake. For low-aspect-ratio wings ($sAR\approx 1$), the wake remains stable due to the strong tip-vortex induced downwash over the entire span. Increasing the aspect ratio allows unsteady vortical flow to emerge away from the tip at sufficiently high angles of attack. These unsteady vortices shed and form closed vortical loops. For higher-aspect-ratio wings ($sAR\gtrsim 4$), the tip effects retard the near-tip shedding process, which desynchronizes from the two-dimensional shedding over the midspan region, yielding vortex dislocation. At high angles of attack, the tip vortex exhibits noticeable undulations due to the strong interaction with the unsteady shedding vortices. The spanwise distribution of force coefficients is found to be related to the three-dimensional wake dynamics and the tip effects. Vortical elements in the wake that are responsible for the generation of lift and drag forces are identified through the force element analysis. We note that at high angles of attack, a stationary vortical structure forms at the leading edge near the tip, giving rise to locally high lift and drag forces. The analysis performed in this paper reveals how the vortical flow around the tip influences the separation physics, the global wake dynamics, and the spanwise force distributions.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, I. H. & Von Doenhoff, A. E. 1959 Theory of Wing Sections, including a Summary of Airfoil Data. Dover.Google Scholar
Ahuja, S., Rowley, C., Kevrekidis, I., Wei, M., Colonius, T. & Tadmor, G.2007 Low-dimensional models for control of leading-edge vortices: equilibria and linearized models. AIAA Paper 2007-709.CrossRefGoogle Scholar
Akkala, J. M. & Buchholz, J. H. J. 2017 Vorticity transport mechanisms governing the development of leading-edge vortices. J. Fluid Mech. 829, 512537.CrossRefGoogle Scholar
Ananda, G. K., Sukumar, P. P. & Selig, M. S. 2015 Measured aerodynamic characteristics of wings at low Reynolds numbers. Aerosp. Sci. Technol. 42, 392406.CrossRefGoogle Scholar
Anderson, J. D. 1999 Aircraft Performance and Design. McGraw-Hill.Google Scholar
Anderson, J. D. 2010 Fundamentals of Aerodynamics. McGraw-Hill.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Birch, D., Lee, T., Mokhtarian, F. & Kafyeke, F. 2004 Structure and induced drag of a tip vortex. J. Aircraft 41 (5), 11381145.CrossRefGoogle Scholar
Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412 (6848), 729733.CrossRefGoogle Scholar
Buchholz, J. H. J. & Smits, A. J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.CrossRefGoogle Scholar
Calderon, D. E., Wang, Z. & Gursul, I. 2013 Lift-enhancing vortex flows generated by plunging rectangular wings with small amplitude. AIAA J. 51 (12), 29532964.CrossRefGoogle Scholar
Cantwell, C. D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J. E., Ekelschot, D. et al. 2015 Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205219.CrossRefGoogle Scholar
Chang, C. C. 1992 Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. A 437 (1901), 517525.Google Scholar
Chen, K. K., Colonius, T. & Taira, K. 2010 The leading-edge vortex and quasisteady vortex shedding on an accelerating plate. Phys. Fluids 22 (3), 033601.CrossRefGoogle Scholar
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.CrossRefGoogle Scholar
Deng, J., Sun, L. & Shao, X. 2017 Floquet stability analysis in the wake of a NACA0015 airfoil at post-stall angles of attack. Phys. Fluids 29 (9), 094104.CrossRefGoogle Scholar
Devenport, W. J., Rife, M. C., Liapis, S. I. & Follin, G. J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67106.CrossRefGoogle Scholar
DeVoria, A. C. & Mohseni, K. 2017 On the mechanism of high-incidence lift generation for steadily translating low-aspect-ratio wings. J. Fluid Mech. 813, 110126.CrossRefGoogle Scholar
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.CrossRefGoogle ScholarPubMed
Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
Duraisamy, K.2005 Studies in tip vortex formation, evolution and control. PhD thesis, University of Maryland, College Park.Google Scholar
Edstrand, A. M., Davis, T. B., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2016 On the mechanism of trailing vortex wandering. J. Fluid Mech. 801, R1.CrossRefGoogle Scholar
Edstrand, A. M., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2018a A parallel stability analysis of a trailing vortex wake. J. Fluid Mech. 837, 858895.CrossRefGoogle Scholar
Edstrand, A. M., Sun, Y., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2018b Active attenuation of a trailing vortex inspired by a parabolized stability analysis. J. Fluid Mech. 855, R2.CrossRefGoogle Scholar
Eisenlohr, H. & Eckelmann, H. 1989 Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds number. Phys. Fluids A 1 (2), 189192.CrossRefGoogle Scholar
Eldredge, J. D. & Jones, A. R. 2019 Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51 (1), 75104.CrossRefGoogle Scholar
Ellington, C. P., Van Den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
Francis, J. S. & Kennedy, D. A. 1979 Formation of a trailing vortex. J. Aircraft 16 (3), 148154.CrossRefGoogle Scholar
Freymuth, P., Bank, W. & Finaish, F. 1987 Further visualization of combined wing tip and starting vortex systems. AIAA J. 25 (9), 11531159.CrossRefGoogle Scholar
Garmann, D. J. & Visbal, M. R. 2014 Dynamics of revolving wings for various aspect ratios. J. Fluid Mech. 748, 932956.CrossRefGoogle Scholar
Garmann, D. J. & Visbal, M. R.2017 Investigation of the unsteady tip vortex structure on a NACA 0012 wing at fixed incidence. AIAA Paper 2017-1002.CrossRefGoogle Scholar
Giuni, M.2013 Formation and early development of wingtip vortices. PhD thesis, University of Glasgow.Google Scholar
Green, M. A. & Smits, A. J. 2008 Effects of three-dimensionality on thrust production by a pitching panel. J. Fluid Mech. 615, 211220.CrossRefGoogle ScholarPubMed
Green, S. I. & Acosta, A. J. 1991 Unsteady flow in trailing vortices. J. Fluid Mech. 227, 107134.CrossRefGoogle Scholar
Greenblatt, D. 2012 Fluidic control of a wing tip vortex. AIAA J. 50 (2), 375386.CrossRefGoogle Scholar
Gregory, N., Quincey, V. G., OReilly, C. L. & Hall, D. J.1971 Progress Report on Observations of Three-Dimensional Flow Patterns Obtained During Stall Development on Aerofoils, and on the Problem of Measuring Two-Dimensional Characteristics. Her Majesty’s Stationery Office.Google Scholar
Gursul, I., Vardaki, E., Margaris, P. & Wang, Z. 2007 Control of wing vortices. In Active Flow Control, pp. 137151. Springer.CrossRefGoogle Scholar
Gursul, I. & Wang, Z. 2018 Flow control of tip/edge vortices. AIAA J. 56 (5), 17311749.CrossRefGoogle Scholar
Ham, F. & Iaccarino, G. 2004 Energy conservation in collocated discretization schemes on unstructured meshes. In Annual Research Briefs, pp. 314. Center for Turbulence Research.Google Scholar
Ham, F., Mattsson, K. & Iaccarino, G. 2006 Accurate and stable finite volume operators for unstructured flow solvers. In Annual Research Briefs, pp. 243261. Center for Turbulence Research.Google Scholar
Harbig, R. R., Sheridan, J. & Thompson, M. C. 2013 Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid Mech. 717, 166192.CrossRefGoogle Scholar
Hayostek, S. & Amitay, M.2018 Three-dimensional separation on finite aspect ratio swept back wings. AIAA Paper 2018-3729.CrossRefGoogle Scholar
He, W., Burtsev, A., Theofilis, V., Zhang, K., Taira, K., Hayostek, S. & Amitay, M.2019 Wake dynamics of finite aspect ratio wings. Part III. Triglobal linear stability analysis. AIAA Paper 2019-1386.CrossRefGoogle Scholar
He, W., Gioria, R. S., Pérez, J. M. & Theofilis, V. 2017a Linear instability of low Reynolds number massively separated flow around three NACA airfoils. J. Fluid Mech. 811, 701741.CrossRefGoogle Scholar
He, W., Tendero, J. A., Paredes, P. & Theofilis, V. 2017b Linear instability in the wake of an elliptic wing. Theor. Comput. Fluid Dyn. 31 (5–6), 483504.CrossRefGoogle Scholar
Helmholtz, H. 1858 Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. Crelles J. 55, 2555.Google Scholar
Hornung, H. 1989 Vorticity generation and transport. In 10th Australasian Fluid Mechanics Conference, Melbourne, Paper KS-3.Google Scholar
Huang, R. F., Wu, J. Y., Jeng, J. H. & Chen, R. C. 2001 Surface flow and vortex shedding of an impulsively started wing. J. Fluid Mech. 441, 265292.CrossRefGoogle Scholar
Jantzen, R. T., Taira, K., Granlund, K. O. & Ol, M. V. 2014 Vortex dynamics around pitching plates. Phys. Fluids 26 (5), 053606.CrossRefGoogle Scholar
Jardin, T. 2017 Coriolis effect and the attachment of the leading edge vortex. J. Fluid Mech. 820, 312340.CrossRefGoogle Scholar
Jones, A. R., Medina, A., Spooner, H. & Mulleners, K. 2016 Characterizing a burst leading-edge vortex on a rotating flat plate wing. Exp. Fluids 57 (4), 52.CrossRefGoogle Scholar
Katz, J. & Galdo, J. B. 1989 Effect of roughness on rollup of tip vortices on a rectangular hydrofoil. J. Aircraft 26 (3), 247253.CrossRefGoogle Scholar
Lee, J. J., Hsieh, C. T., Chang, C. C. & Chu, C. C. 2012 Vorticity forces on an impulsively started finite plate. J. Fluid Mech. 694, 464492.CrossRefGoogle Scholar
Lentink, D. & Dickinson, M. H. 2009 Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Biol. 212 (16), 27052719.CrossRefGoogle ScholarPubMed
Levold, P.2012 Viscous flow around finite length circular cylinder. Master’s thesis, Norwegian University of Science and Technology.Google Scholar
Lucor, D., Imas, L. & Karniadakis, G. E. 2001 Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows. J. Fluids Struct. 15 (3–4), 641650.CrossRefGoogle Scholar
Manar, F., Mancini, P., Mayo, D. & Jones, A. R. 2015 Comparison of rotating and translating wings: force production and vortex characteristics. AIAA J. 54 (2), 519530.CrossRefGoogle Scholar
Mancini, P., Manar, F., Granlund, K., Ol, M. V. & Jones, A. R. 2015 Unsteady aerodynamic characteristics of a translating rigid wing at low Reynolds number. Phys. Fluids 27 (12), 123102.CrossRefGoogle Scholar
McCormick, B. W., Sherrier, H. E. & Tangler, J. L. 1968 Structure of trailing vortices. J. Aircraft 5 (3), 260267.CrossRefGoogle Scholar
Morton, B. R. 1984 The generation and decay of vorticity. Geophys. Astrophys. Fluid Dyn. 28 (3–4), 277308.CrossRefGoogle Scholar
Navrose, Brion, V. & Jacquin, L. 2019 Transient growth in the near wake region of the flow past a finite span wing. J. Fluid Mech. 866, 399430.CrossRefGoogle Scholar
Noack, B. R., Ohle, F. & Eckelmann, H. 1991 On cell formation in vortex streets. J. Fluid Mech. 227, 293308.CrossRefGoogle Scholar
Pauley, L. L., Moin, P. & Reynolds, W. C. 1990 The structure of two-dimensional separation. J. Fluid Mech. 220, 397411.CrossRefGoogle Scholar
Pelletier, A. & Mueller, T. J. 2000 Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings. J. Aircraft 37 (5), 825832.CrossRefGoogle Scholar
Percin, M. & Van Oudheusden, B. W. 2015 Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates. Exp. Fluids 56 (2), 47.CrossRefGoogle Scholar
Rojratsirikul, P., Genc, M. S., Wang, Z. & Gursul, I. 2011 Flow-induced vibrations of low aspect ratio rectangular membrane wings. J. Fluids Struct. 27 (8), 12961309.CrossRefGoogle Scholar
Rossi, E., Colagrossi, A., Oger, G. & Le Touzé, D. 2018 Multiple bifurcations of the flow over stalled airfoils when changing the Reynolds number. J. Fluid Mech. 846, 356391.CrossRefGoogle Scholar
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.CrossRefGoogle Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C. K., Cesnik, C. E. S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.CrossRefGoogle Scholar
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30 (1), 107138.CrossRefGoogle Scholar
Taira, K. & Colonius, T. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.CrossRefGoogle Scholar
Taneda, S. 1952 Studies on wake vortices (I). An experimental study on the structure of the vortex street behind a circular cylinder of finite length. Res. Inst. Appl. Mech. 1, 131143.Google Scholar
Techet, A. H., Hover, F. S. & Triantafyllou, M. S. 1998 Vortical patterns behind a tapered cylinder oscillating transversely to a uniform flow. J. Fluid Mech. 363, 7996.CrossRefGoogle Scholar
Tong, W., Yang, Y. & Wang, S. 2020 Characterizing three-dimensional features of vortex surfaces in the flow past a finite plate. Phys. Fluids 32 (1), 011903.Google Scholar
Torres, G. E. & Mueller, T. J. 2004 Low aspect ratio aerodynamics at low Reynolds numbers. AIAA J. 42 (5), 865873.CrossRefGoogle Scholar
Visbal, M. R., Yilmaz, T. O. & Rockwell, D. 2013 Three-dimensional vortex formation on a heaving low-aspect-ratio wing: computations and experiments. J. Fluids Struct. 38, 5876.CrossRefGoogle Scholar
Wang, K. C. 1976 Separation of three-dimensional flow. In Rev. Viscous Flow, Proceedings of the Lockheed Georgia Co. Symposium. Marietta, Georgia, pp. 341414.Google Scholar
Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.CrossRefGoogle Scholar
Winkelmann, A., Barlow, J., Saini, J., Anderson, J. Jr. & Jones, E. 1980 The effects of leading edge modifications on the post-stall characteristics of wings. AIAA Paper 1980-0199.CrossRefGoogle Scholar
Winkelmann, A. E. & Barlow, J. B. 1980 Flowfield model for a rectangular planform wing beyond stall. AIAA J. 18 (8), 10061008.CrossRefGoogle Scholar
Wu, J. Z., Ma, H. Y. & Zhou, M. D. 2007 Vorticity and Vortex Dynamics. Springer.Google Scholar
Yarusevych, S., Sullivan, P. E. & Kawall, J. G. 2009 On vortex shedding from an airfoil in low-Reynolds-number flows. J. Fluid Mech. 632, 245271.CrossRefGoogle Scholar
Yilmaz, T. O. & Rockwell, D. 2012 Flow structure on finite-span wings due to pitch-up motion. J. Fluid Mech. 691, 518545.CrossRefGoogle Scholar
Zhang, K., Taira, K., Hayostek, S., Amitay, M., He, W. & Theofilis, V.2019 Wake dynamics of finite aspect ratio wings. Part II. Computational study. AIAA Paper 2019-1385.CrossRefGoogle Scholar