Hostname: page-component-758b78586c-cmtlc Total loading time: 0 Render date: 2023-11-28T19:00:41.267Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

On vortex rings around vortices: an optimal mechanism

Published online by Cambridge University Press:  26 April 2007

ARNAUD ANTKOWIAK
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), 2, Allée du Professeur Camille Soula, 31 400 Toulouse, France
PIERRE BRANCHER
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT), 2, Allée du Professeur Camille Soula, 31 400 Toulouse, France

Abstract

Stable columnar vortices subject to hydrodynamic noise (e.g. turbulence) present recurrent behaviours, such as the systematic development of vortex rings at the periphery of the vortex core. This phenomenon lacks a comprehensive explanation, partly because it is not associated with an instability stricto sensu. The aim of the present paper is to identify the physical mechanism triggering this intrinsic feature of vortices using an optimal perturbation analysis as a tool of investigation. We find that the generation of vortex rings is linked to the intense and rapid amplification of specific disturbances in the form of azimuthal velocity streaks that eventually evolve into azimuthal vorticity rolls generated by the rotational part of the local Coriolis force. This evolution thus appears to follow a scenario opposite to the classical lift-up view, where rolls give rise to streaks.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

Antkowiak, A. 2005 Dynamique aux temps courts d'un tourbillon isolé. PhD thesis, Université Paul Sabatier, Toulouse, France.Google Scholar
Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb-Oseen vortex. Phys. Fluids 16 (1), L1L4.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Beninati, M. L. & Marshall, J. S. 2005 An experimental study of the effect of free-stream turbulence on an trailing vortex. Exps. Fluids 38, 244257.Google Scholar
Corbett, P. & Bottaro, A. 2001 Optimal linear growth in swept boundary layers. J. Fluid Mech. 435, 123.Google Scholar
Devenport, W. J., Rife, M. C., Liapis, S. I. & Follin, G. J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67106.Google Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.Google Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 The Kelvin waves of a Lamb-Oseen vortex. J. Fluid Mech. 551, 235274.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1993 Stochastic forcing of the linearized Navier-Stokes equations. Phys. Fluids 5 (11), 26002609.Google Scholar
Fornberg, B. 1995 A Practical Guide to Pseudospectral Methods. Cambridge University Press.Google Scholar
Gallaire, F. & Chomaz, J.-M. 2003 Three-dimensional instability of isolated vortices. Phys. Fluids 15 (8), 21132126.Google Scholar
Jacquin, L., Fabre, D., Sipp, D. & Coustols, E. 2005 Unsteadiness, instability and turbulence in trailing vortices. C. R. Physique 6, 399414.Google Scholar
Kawahara, G., Kida, S., Tanaka, M. & Yanase, S. 1997 Wrap, tilt and stretch of vortex lines around a strong thin straight vortex tube in a simple shear flow. J. Fluid Mech. 353, 115162.Google Scholar
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.Google Scholar
Kerswell, R. R. & Davey, A. 1996 On the linear instability of elliptic pipe flow. J. Fluid Mech. 316, 307324.Google Scholar
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735756.Google Scholar
Luchini, P. 1996 Reynolds-number-independent instability of the boundary layer over a flat surface. J. Fluid Mech. 327, 101115.Google Scholar
Marshall, J. S. 1998 A model of heavy particle dispersion by organized vortex structures wrapped around a columnar vortex core. Phys. Fluids 10 (12), 32363238.Google Scholar
Melander, M. V. & Hussain, F. 1993 Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. E 48 (4), 26692689.Google Scholar
Miyazaki, T. & Hunt, J. C. R. 2000 Linear and nonlinear interactions between a columnar vortex and external turbulence. J. Fluid Mech. 402, 349378.Google Scholar
Moet, H., Laporte, F., Chevalier, G. & Poinsot, T. 2005 Wave propagation in vortices and vortex bursting. Phys. Fluids 17, 054109.Google Scholar
Nolan, D. S. & Farrell, B. F. 1999 Generalized stability analyses of asymmetric disturbances in one- and two-celled vortices maintained by radial inflow. J. Atmos. Sci. 56, 12821307.Google Scholar
Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Smith, G. B. & Montgomery, M. T. 1995 Vortex axisymmetrization: Dependance on azimuthal wave-number or asymmetric radial structure changes. Q. J. R. Meteorol. Soc. 121, 16151650.Google Scholar
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30, 107138.Google Scholar
Stafford, N. 2006 Turbulent times. Nature 443. Google Scholar
Weideman, J. A. C. & Reddy, S. C. 2000 A Matlab differentiation matrix suite. ACM Trans. Math. Soft. 26 (4), 465519.Google Scholar