Hostname: page-component-797576ffbb-tx785 Total loading time: 0 Render date: 2023-12-04T23:25:35.242Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Optimal Taylor–Couette turbulence

Published online by Cambridge University Press:  03 July 2012

Dennis P. M. van Gils
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, Impact and MESA+ Institutes, and Burgers Center for Fluid Dynamics, University of Twente, 7500AE Enschede, The Netherlands
Sander G. Huisman
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, Impact and MESA+ Institutes, and Burgers Center for Fluid Dynamics, University of Twente, 7500AE Enschede, The Netherlands
Siegfried Grossmann
Affiliation:
Department of Physics, Renthof 6, University of Marburg, D-35032 Marburg, Germany
Chao Sun
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, Impact and MESA+ Institutes, and Burgers Center for Fluid Dynamics, University of Twente, 7500AE Enschede, The Netherlands
Detlef Lohse*
Affiliation:
Physics of Fluids Group, Faculty of Science and Technology, Impact and MESA+ Institutes, and Burgers Center for Fluid Dynamics, University of Twente, 7500AE Enschede, The Netherlands
*
Email address for correspondence: d.lohse@utwente.nl.

Abstract

Strongly turbulent Taylor–Couette flow with independently rotating inner and outer cylinders with a radius ratio of is experimentally studied. From global torque measurements, we analyse the dimensionless angular velocity flux as a function of the Taylor number and the angular velocity ratio in the large-Taylor-number regime and well off the inviscid stability borders (Rayleigh lines) for co-rotation and for counter-rotation. We analyse the data with the common power-law ansatz for the dimensionless angular velocity transport flux , with an amplitude and an exponent . The data are consistent with one effective exponent for all , but we discuss a possible dependence in the co- and weakly counter-rotating regimes. The amplitude of the angular velocity flux is measured to be maximal at slight counter-rotation, namely at an angular velocity ratio of , i.e. along the line . This value is theoretically interpreted as the result of a competition between the destabilizing inner cylinder rotation and the stabilizing but shear-enhancing outer cylinder counter-rotation. With the help of laser Doppler anemometry, we provide angular velocity profiles and in particular identify the radial position of the neutral line, defined by for fixed height . For these large values, the ratio , which is close to , is distinguished by a zero angular velocity gradient in the bulk. While for moderate counter-rotation , the neutral line still remains close to the outer cylinder and the probability distribution function of the bulk angular velocity is observed to be monomodal. For stronger counter-rotation the neutral line is pushed inwards towards the inner cylinder; in this regime the probability distribution function of the bulk angular velocity becomes bimodal, reflecting intermittent bursts of turbulent structures beyond the neutral line into the outer flow domain, which otherwise is stabilized by the counter-rotating outer cylinder. Finally, a hypothesis is offered allowing a unifying view and consistent interpretation for all these various results.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ahlers, G., Funfschilling, D. & Bodenschatz, E. 2011 Addendum to Transitions in heat transport by turbulent convection at Rayleigh numbers up to . New J. Phys. 13, 049401.Google Scholar
2. Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.Google Scholar
3. Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155.Google Scholar
4. van den Berg, T. H., Doering, C., Lohse, D. & Lathrop, D. 2003 Smooth and rough boundaries in turbulent Taylor–Couette flow. Phys. Rev. E 68, 036307.Google Scholar
5. Borrero-Echeverry, D., Schatz, M. F. & Tagg, R. 2010 Transient turbulence in Taylor–Couette flow. Phys. Rev. E 81, 025301.Google Scholar
6. Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177191.Google Scholar
7. Buchel, P., Lucke, M., Roth, D. & Schmitz, R. 1996 Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow. Phys. Rev. E 53 (5), 47644777.Google Scholar
8. Burin, M. J., Schartman, E. & Ji, H. 2010 Local measurements of turbulent angular momentum transport in circular Couette flow. Exp. Fluids 48, 763769.Google Scholar
9. Busse, F. H. 1972 The bounding theory of turbulence and its physical significance in the case of turbulent Couette flow. In Statistical Models and Turbulence, Lecture Notes in Physics , vol. 12, p. 103 Springer.Google Scholar
10. Calzavarini, E., Lohse, D., Toschi, F. & Tripiccione, R. 2005 Rayleigh and Prandtl number scaling in the bulk of Rayleigh–Bénard turbulence. Phys. Fluids 17, 055107.Google Scholar
11. Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385.Google Scholar
12. Coles, D. & van Atta, C. 1966 Measured distortion of a laminar circular Couette flow by end effects. J. Fluid Mech. 25, 513.Google Scholar
13. Coughlin, K. & Marcus, P. S. 1996 Turbulent bursts in Couette–Taylor flow. Phys. Rev. Lett. 77 (11), 22142217.Google Scholar
14. DiPrima, R. C. & Swinney, H. L. 1981 Instabilities and transition in flow between concentric rotating cylinders. In Hydrodynamic Instabilities and the Transition to Turbulence (ed. Swinney, H. L. & Gollub, J. P. ), pp. 139180. Springer.Google Scholar
15. Doering, C. & Constantin, P. 1994 Variational bounds on energy-dissipation in incompressible flow: shear flow. Phys. Rev. E 49, 40874099.Google Scholar
16. Dominguez-Lerma, M. A., Ahlers, G. & Cannell, D. S. 1984 Marginal stability curve and linear growth rate for rotating Couette–Taylor flow and Rayleigh–Bénard convection. Phys. Fluids 27, 856.Google Scholar
17. Dominguez-Lerma, M. A., Cannell, D. S. & Ahlers, G. 1986 Eckhaus boundary and wavenumber selection in rotating Couette–Taylor flow. Phys. Rev. A 34, 4956.Google Scholar
18. Dubrulle, B., Dauchot, O., Daviaud, F., Longgaretti, P. Y., Richard, D. & Zahn, J. P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.Google Scholar
19. Dubrulle, B. & Hersant, F. 2002 Momentum transport and torque scaling in Taylor–Couette flow from an analogy with turbulent convection. Eur. Phys. J. B 26, 379386.Google Scholar
20. Dutcher, C. S. & Muller, S. J. 2007 Explicit analytic formulas for Newtonian Taylor–Couette primary instabilities. Phys. Rev. E 75, 04730.Google Scholar
21. Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.Google Scholar
22. Effinger, H. & Grossmann, S. 1987 Static structure function of turbulent flow from the Navier–Stokes equation. Z. Phys. B 66, 289.Google Scholar
23. Esser, A. & Grossmann, S. 1996 Analytic expression for Taylor–Couette stability boundary. Phys. Fluids 8, 18141819.Google Scholar
24. van Gils, D. P. M., Bruggert, G. W., Lathrop, D. P., Sun, C. & Lohse, D. 2011a The Twente turbulent Taylor–Couette facility: strongly turbulent (multi-phase) flow between independently rotating cylinders. Rev. Sci. Instrum. 82, 025105.Google Scholar
25. van Gils, D. P. M., Huisman, S. G., Bruggert, G. W., Sun, C. & Lohse, D. 2011b Torque scaling in turbulent Taylor–Couette flow with co- and counter-rotating cylinders. Phys. Rev. Lett. 106, 024502.Google Scholar
26. Greenspan, H. P. 1990 The Theory of Rotating Flows. Breukelen.Google Scholar
27. Grossmann, S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72, 603618.Google Scholar
28. Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying view. J. Fluid. Mech. 407, 2756.Google Scholar
29. Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.Google Scholar
30. Grossmann, S. & Lohse, D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305.Google Scholar
31. Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 44624472.Google Scholar
32. Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.Google Scholar
33. He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.Google Scholar
34. Hollerbach, R. & Fournier, A. 2004 End-effects in rapidly rotating cylindrical Taylor–Couette flow. In Workshop on MHD Couette Flows: Experiments and Models, Acitrezza, Italy, 29 February–2 March (ed. R. Rosner, G. Rudiger & A. Bonanno), AIP Conference Proceedings, vol. 733, pp. 114–121. American Institute of Physics..Google Scholar
35. van Hout, R. & Katz, J. 2011 Measurements of mean flow and turbulence characteristics in high-Reynolds number counter-rotating Taylor–Couette flow. Phys. Fluids 23 (10), 105102.Google Scholar
36. Huisman, S. G., van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D. 2012a Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108, 024501.Google Scholar
37. Huisman, S. G., van Gils, D. P. M. & Sun, C. 2012 b Applying laser Doppler anemometry inside a Taylor–Couette geometry using a ray-tracer to correct for curvature effects. Eur. J. Mech. B/Fluids (in press).Google Scholar
38. Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343346.Google Scholar
39. Kraichnan, R. H. 1962 Turbulent thermal convection at arbritrary Prandtl number. Phys. Fluids 5, 13741389.Google Scholar
40. Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
41. Lathrop, D. P., Fineberg, J. & Swinney, H. S. 1992a Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46, 63906405.Google Scholar
42. Lathrop, D. P., Fineberg, J. & Swinney, H. S. 1992b Turbulent flow between concentric rotating cylinders at large Reynolds numbers. Phys. Rev. Lett. 68, 15151518.Google Scholar
43. Lewis, G. S. & Swinney, H. L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59, 54575467.Google Scholar
44. Lohse, D. & Toschi, F. 2003 The ultimate state of thermal convection. Phys. Rev. Lett. 90, 034502.Google Scholar
45. Marcus, P. S. 1984 Simulation of Taylor–Couette flow. Part 1. Numerical methods and comparison with experiment. J. Fluid Mech. 146, 4564.Google Scholar
46. Mullin, T., Cliffe, K. A. & Pfister, G. 1987 Unusual time-dependent phenomena in Taylor–Couette flow at moderately low Reynolds numbers. Phys. Rev. Lett. 58 (21), 22122215.Google Scholar
47. Mullin, T., Pfister, G. & Lorenzen, A. 1982 New observations on hysteresis effects in Taylor–Couette flow. Phys. Fluids 25 (7), 11341136.Google Scholar
48. Ostilla, R., Stevens, R. J. A. M., Grossmann, S., Verzicco, R. & Lohse, D. 2012 Optimal Taylor–Couette flow: transition to turbulence. J. Fluid Mech. (submitted).Google Scholar
49. Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.Google Scholar
50. Pfister, G. & Rehberg, I. 1981 Space dependent order parameter in circular Couette flow transitions. Phys. Lett. 83, 1922.Google Scholar
51. Pfister, G., Schmidt, H., Cliffe, K. A. & Mullin, T. 1988 Bifurcation phenomena in Taylor–Couette flow in a very short annulus. J. Fluid Mech. 191, 118.Google Scholar
52. Ravelet, F., Delfos, R. & Westerweel, J. 2010 Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor–Couette flow. Phys. Fluids 22 (5), 055103.Google Scholar
53. Richard, D. 2001 Instabilités hydrodynamiques dans les ecoulements en rotation différentielle. PhD thesis, Université Paris VII.Google Scholar
54. Roche, P. E., Castaing, B., Chabaud, B. & Hebral, B. 2001 Observation of the power law in Rayleigh–Bénard convection. Phys. Rev. E 63, 045303.Google Scholar
55. Schmidt, L. E., Calzavarini, E., Lohse, D., Toschi, F. & Verzicco, R. 2012 Axially homogeneous Rayleigh–Bénard convection in a cylindrical cell. J. Fluid Mech. 691, 5268.Google Scholar
56. Smith, G. P. & Townsend, A. A. 1982 Turbulent Couette flow between concentric cylinders at large Taylor numbers. J. Fluid Mech. 123, 187217.Google Scholar
57. Stevens, R. J. A. M., Lohse, D. & Verzicco, R. 2011 Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J. Fluid Mech. 688, 3143.Google Scholar
58. Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.Google Scholar
59. Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in Rayleigh–Bénard convection: beyond boundary-layer theory. Europhys. Lett. 80, 34002.Google Scholar
60. Sun, C., Cheung, Y. H. & Xia, K.-Q. 2008 Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 605, 79113.Google Scholar
61. Tagg, R. 1994 The Couette–Taylor problem. Nonlinear Sci. Today 4 (3), 1.Google Scholar
62. Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289.Google Scholar
63. Wendt, F. 1933 Turbulente Strömungen zwischen zwei rotierenden Zylindern. Ingenieurs-Archiv 4, 577595.Google Scholar
64. Werne, J. 1994 Plume model for boundary layer dynamics in hard turbulence. Phys. Rev. E 49, 4072.Google Scholar
65. Zhou, Q., Stevens, R. J. A. M., Sugiyama, K., Grossmann, S., Lohse, D. & Xia, K.-Q. 2010 Prandtl–Blasius temperature and velocity boundary layer profiles in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 664, 297.Google Scholar