Hostname: page-component-7d684dbfc8-kpkbf Total loading time: 0 Render date: 2023-09-24T11:02:00.578Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Optimal wave packets in a boundary layer and initial phases of a turbulent spot

Published online by Cambridge University Press:  27 May 2010

DIMEG, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy SINUMEF Laboratory Arts et Metiers ParisTech, 151, Bd. de l'Hopital, 75013 Paris, France
SINUMEF Laboratory Arts et Metiers ParisTech, 151, Bd. de l'Hopital, 75013 Paris, France
DICAT, Università di Genova, Via Montallegro 1, 16145 Genova, Italy
DIMEG, Politecnico di Bari, Via Re David 200, 70125 Bari, Italy
Email address for correspondence:


The three-dimensional global optimal dynamics of a flat-plate boundary layer is studied by means of an adjoint-based optimization in a spatial domain of long – but finite – streamwise dimension. The localized optimal initial perturbation is characterized by a pair of streamwise-modulated counter-rotating vortices, tilted upstream, yielding at the optimal time elongated streaks of alternating sign in the streamwise direction. This indicates that perturbations with non-zero streamwise wavenumber have a role in the transient dynamics of a boundary layer. A scaling law is provided, describing the variation of the streamwise modulation of the optimal initial perturbation with respect to the streamwise domain length and to the Reynolds number. For spanwise-extended domains, a near-optimal three-dimensional perturbation is extracted during the optimization process; it is localized also in the spanwise direction, resulting in a wave packet of elongated disturbances modulated in the spanwise and streamwise directions. The nonlinear evolution of the optimal and near-optimal perturbations is investigated by means of direct numerical simulations. Both perturbations are found to induce transition at lower levels of the initial energy than local optimal and suboptimal perturbations. Moreover, it is observed that transition occurs in a well-defined region of the convected wave packet, close to its centre, via a mechanism including at the same time oscillations of the streaks of both quasi-sinuous and quasi-varicose nature. Hairpin vortices are observed before transition; they have an active role in the breakdown of the streaks and result in a turbulent spot which spreads out in the boundary layer.

Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Alizard, F. & Robinet, J.-C. 2007 Spatially convective global modes in a boundary layer. Phys. Fluids 19, 114105.CrossRefGoogle Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Bakchinov, A. A., Grek, G. R. & Kozlov, V. V. 1992 A mechanism of turbulent spot formation. Sibirskii Fiz.-Tekh. Z. 4, 3945.Google Scholar
Barrow, J., Barnes, F. H., Ross, M. A. S. & Hayes, S. T. 1984 The structure of a turbulent spot in a Blasius flow. J. Fluid Mech. 149, 319337.CrossRefGoogle Scholar
Bers, A. 1983 Space-time evolution of plasma instabilities – absolute and convective. In Handbook of Plasma Physics (ed. Rosenbluth, M. N. & Sagdeev, R. Z.) vol. 1, pp. 451517. North-Holland.Google Scholar
Biau, D. & Bottaro, A. 2009 An optimal path to transition in a duct. Phil. Trans. R. Soc. A 367, 529544.CrossRefGoogle Scholar
Biau, D., Soueid, H. & Bottaro, A. 2008 Transition to turbulence in duct flow. J. Fluid Mech. 596, 133142.CrossRefGoogle Scholar
Bottaro, A. 1990 Note on open boundary conditions for elliptic flows. Numer. Heat Trans. B 18, 243256.CrossRefGoogle Scholar
Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in a boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167198.CrossRefGoogle Scholar
Breuer, K. S., Cohen, J. & Haritonidis, J. H. 1997 The late stages of transition induced by a low-amplitude wavepacket in a laminar boundary layer. J. Fluid Mech. 340, 395411.CrossRefGoogle Scholar
Breuer, K. S. & Landahl, M. T. 1990 The evolution of a localized disturbance in a laminar boundary layer. Part 2. Strong disturbances. J. Fluid Mech. 220, 595621.CrossRefGoogle Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasma. MIT Press.Google Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.CrossRefGoogle Scholar
Chambers, F. W. & Thomas, S. W. 1983 Turbulent spots, wave packets and growth. Phys. Fluids 26, 11601162.CrossRefGoogle Scholar
Cohen, J., Breuer, K. S. & Haritonidis, J. H. 1991 On the evolution of a wave packet in a laminar boundary layer. J. Fluid Mech. 225, 575606.CrossRefGoogle Scholar
Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to streamwise pressure gradient. Phys. Fluids 12, 120130.CrossRefGoogle Scholar
Emmons, H. W. 1951 The laminar-turbulent transition in a boundary layer. Part I. J. Aeronaut. Sci. 18, 490498.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle Scholar
Farrell, B. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31, 20932102.CrossRefGoogle Scholar
Gad-el Hak, M., Blackwelder, R. F. & Riley, J. J. 1981 On the growth of turbulent regions in laminar boundary layers. J. Aeronaut. Sci. 110, 7395.Google Scholar
Gaster, M. & Grant, I. 1975 An experimental investigation on the formation and development of a wave packet in a laminar boundary layer. Proc. R. Soc. Lond. Ser. A 347, 253269.CrossRefGoogle Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent structure. J. Fluid Mech. 107, 297337.CrossRefGoogle Scholar
Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for bypass transition from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250, 169207.CrossRefGoogle Scholar
Henningson, D. S., Spalart, P. & Kim, J. 1987 Numerical simulations of turbulent spots in plane Poiseuille and boundary-layer flows. Phys. Fluids 30, 29142917.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Tech. Rep. CTR-S88. The Centre for Turbulence Research.Google Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.CrossRefGoogle Scholar
Landahl, M.T. 1990 On sublayer streaks. J. Fluid Mech. 212, 593614.CrossRefGoogle Scholar
Lehoucq, R., Sorensen, D. & Yang, C. 1997 ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.Google Scholar
Luchini, P. 2000 Reynolds number indipendent instability of the Blasius boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.CrossRefGoogle Scholar
Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229, 499516.CrossRefGoogle Scholar
Lundell, F. & Alfredsson, P. H. 2004 Streamwise scaling of streaks in laminar boundary layers subjected to free-stream turbulence. Phys. Fluids 16, 18141817.CrossRefGoogle Scholar
Marusic, I. 2009 Unravelling turbulence near walls. J. Fluid Mech. 630, 14.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.CrossRefGoogle Scholar
Orr, W. M. F. 1907 The stability or instability of the steady motions of a liquid. Part I. Proc. R. Ir. Acad. A 27, 968.Google Scholar
Perry, A. E., Lim, T. T. & Teh, E. W. 1981 A visual study of turbulent spots. J. Fluid Mech. 104, 387405.CrossRefGoogle Scholar
Sankaran, R., Sokolov, M. & Antonia, R. A. 1988 Substructures in a turbulent spot. J. Fluid Mech. 197, 389414.CrossRefGoogle Scholar
Schmid, P. J. 2000 Linear stability theory and by pass transition in shear flows. Phys. Plasmas 7, 17881794.CrossRefGoogle Scholar
Schmid, P. & Henningson, D. 2001 Stability and Transition in Shear Fows. Springer.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Schubauer, G. B. & Klebanoff, P. S. 1955 Contributions on the mechanics of boundary layer transition. Tech. Rep. TN 3498. NACA.Google Scholar
Singer, B.A. 1996 Characteristics of a young turbulent spot. Phys. Fluids 8, 509512.CrossRefGoogle Scholar
Sommerfeld, A. 1908 Ein Beitrag zur hydrodynamische Erklärung der turbulenten Flüssigkeitsbewegungen. In Proceedings of the 4th International Congress of Mathematicians, III. Rome, Italy, pp. 116124.Google Scholar
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for the three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.CrossRefGoogle Scholar
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Wu, X. & Moin, P. 2009 Direct numerical simulation of turbulence in a nominally-zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech. 630, 541.CrossRefGoogle Scholar
Wygnanski, I., Sokolov, M. & Friedman, D. 1976 On a turbulent spot in a laminar boundary layer. J. Fluid Mech. 78, 785819.CrossRefGoogle Scholar
Zuccher, S., Luchini, P. & Bottaro, A. 2004 Algebraic growth in a Blasius boundary layer: optimal and robust control by mean suction in the nonlinear regime. Eur. J. Mech. B/Fluids 513, 135160.CrossRefGoogle Scholar