Hostname: page-component-5b777bbd6c-4n89n Total loading time: 0 Render date: 2025-06-24T14:19:31.372Z Has data issue: false hasContentIssue false

Particle transport and deposition in wall-sheared thermal turbulence

Published online by Cambridge University Press:  08 November 2024

Ao Xu
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi'an 710072, PR China
Ben-Rui Xu
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China
Heng-Dong Xi*
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an 710072, PR China National Key Laboratory of Aircraft Configuration Design, Xi'an 710072, PR China
*
Email address for correspondence: hengdongxi@nwpu.edu.cn

Abstract

We studied the transport and deposition behaviour of point particles in Rayleigh–Bénard convection cells subjected to Couette-type wall shear. Direct numerical simulations (DNSs) are performed for Rayleigh number ($Ra$) in the range $10^{7} \leq Ra \leq ~10^9$ with a fixed Prandtl number $Pr = 0.71$, while the wall-shear Reynolds number ($Re_w$) is in the range $0 \leq Re_w \leq ~12\,000$. With the increase of $Re_w$, the large-scale rolls expanded horizontally, evolving into zonal flow in two-dimensional simulations or streamwise-oriented rolls in three-dimensional simulations. We observed that, for particles with a small Stokes number ($St$), they either circulated within the large-scale rolls when buoyancy dominated or drifted near the walls when shear dominated. For medium $St$ particles, pronounced spatial inhomogeneity and preferential concentration were observed regardless of the prevailing flow state. For large $St$ particles, the turbulent flow structure had a minor influence on the particles’ motion; although clustering still occurred, wall shear had a negligible influence compared with that for medium $St$ particles. We then presented the settling curves to quantify the particle deposition ratio on the walls. Our DNS results aligned well with previous theoretical predictions, which state that small $St$ particles settle with an exponential deposition ratio and large $St$ particles settle with a linear deposition ratio. For medium $St$ particles, where complex particle–turbulence interaction emerges, we developed a new model describing the settling process with an initial linear stage followed by a nonlinear stage. Unknown parameters in our model can be determined either by fitting the settling curves or using empirical relations. Compared with DNS results, our model also accurately predicts the average residence time across a wide range of $St$ for various $Re_w$.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Batchelor, G.K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5 (1), 113133.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2014 Velocity statistics in turbulent channel flow up to $Re_{\tau }=4000$. J. Fluid Mech. 742, 171191.CrossRefGoogle Scholar
Blass, A., Tabak, P., Verzicco, R., Stevens, R.J.A.M. & Lohse, D. 2021 The effect of Prandtl number on turbulent sheared thermal convection. J. Fluid Mech. 910, A37.CrossRefGoogle Scholar
Blass, A., Zhu, X.-J., Verzicco, R., Lohse, D. & Stevens, R.J.A.M. 2020 Flow organization and heat transfer in turbulent wall sheared thermal convection. J. Fluid Mech. 897, A22.CrossRefGoogle ScholarPubMed
Bosse, T., Kleiser, L. & Meiburg, E. 2006 Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids 18 (2), 027102.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54, 159189.CrossRefGoogle Scholar
Calzavarini, E., Jiang, L.-F. & Sun, C. 2020 Anisotropic particles in two-dimensional convective turbulence. Phys. Fluids 32 (2), 023305.CrossRefGoogle Scholar
Calzavarini, E., Kerscher, M., Lohse, D. & Toschi, F. 2008 Dimensionality and morphology of particle and bubble clusters in turbulent flow. J. Fluid Mech. 607, 1324.CrossRefGoogle Scholar
Challabotla, N.R., Zhao, L.-H. & Andersson, H.I. 2015 Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2.CrossRefGoogle Scholar
Chen, X.-Y. & Prosperetti, A. 2024 Particle-resolved multiphase Rayleigh–Bénard convection. Phys. Rev. Fluids 9 (5), 054301.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (58), 125.CrossRefGoogle ScholarPubMed
Clift, R., Grace, J.R. & Weber, M.E. 1978 Bubbles, Drops, and Particles. Academic Press.Google Scholar
Demou, A.D., Ardekani, M.N., Mirbod, P. & Brandt, L. 2022 Turbulent Rayleigh–Bénard convection in non-colloidal suspensions. J. Fluid Mech. 945, A6.CrossRefGoogle Scholar
Denzel, C.J., Bragg, A.D. & Richter, D.H. 2023 Stochastic model for the residence time of solid particles in turbulent Rayleigh–Bénard flow. Phys. Rev. Fluids 8 (2), 024307.CrossRefGoogle Scholar
Du, Y.-H. & Yang, Y.-T. 2022 Wall-bounded thermal turbulent convection driven by heat-releasing point particles. J. Fluid Mech. 953, A41.CrossRefGoogle Scholar
Ferenc, J.S. & Néda, Z. 2007 On the size distribution of Poisson Voronoi cells. Physica A 385 (2), 518526.CrossRefGoogle Scholar
Fischer, P.F. 1997 An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133 (1), 84101.CrossRefGoogle Scholar
Gao, W., Samtaney, R. & Richter, D.H. 2023 Direct numerical simulation of particle-laden flow in an open channel at $Re_{\tau }=5186$. J. Fluid Mech. 957, A3.CrossRefGoogle Scholar
Goluskin, D., Johnston, H., Flierl, G.R. & Spiegel, E.A. 2014 Convectively driven shear and decreased heat flux. J. Fluid Mech. 759, 360385.CrossRefGoogle Scholar
Gore, R.A. & Crowe, C.T. 1989 Effect of particle size on modulating turbulent intensity. Intl J. Multiphase Flow 15 (2), 279285.CrossRefGoogle Scholar
Guha, A. 2008 Transport and deposition of particles in turbulent and laminar flow. Annu. Rev. Fluid Mech. 40, 311341.CrossRefGoogle Scholar
Hedworth, H.A., Karam, M., McConnell, J., Sutherland, J.C. & Saad, T. 2021 Mitigation strategies for airborne disease transmission in orchestras using computational fluid dynamics. Sci. Adv. 7 (26), eabg4511.CrossRefGoogle ScholarPubMed
van der Hoef, M.A., van Sint Annaland, M., Deen, N.G. & Kuipers, J.A.M. 2008 Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 4770.CrossRefGoogle Scholar
Hori, K., Jones, C.A., Antuñano, A., Fletcher, L.N. & Tobias, S.M. 2023 Jupiter's cloud-level variability triggered by torsional oscillations in the interior. Nat. Astron. 7 (7), 825835.CrossRefGoogle Scholar
Jie, Y.-C., Cui, Z.-W., Xu, C.-X. & Zhao, L.-H. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.CrossRefGoogle Scholar
Jin, T.-C., Wu, J.-Z., Zhang, Y.-Z., Liu, Y.-L. & Zhou, Q. 2022 Shear-induced modulation on thermal convection over rough plates. J. Fluid Mech. 936, A28.CrossRefGoogle Scholar
Kooij, G.L., Botchev, M.A., Frederix, E.M.A., Geurts, B.J., Horn, S., Lohse, D., van der Poel, E.P., Shishkina, O., Stevens, R.J.A.M. & Verzicco, R. 2018 Comparison of computational codes for direct numerical simulations of turbulent Rayleigh–Bénard convection. Comput. Fluids 166, 18.CrossRefGoogle Scholar
Li, J.-Y. & Yang, Y.-T. 2022 Flow structures and vertical transport in tilting salt fingers with a background shear. Phys. Rev. Fluids 7 (5), 053501.CrossRefGoogle Scholar
Li, Y.-Z., Chen, X., Xu, A. & Xi, H.-D. 2022 Counter-flow orbiting of the vortex centre in turbulent thermal convection. J. Fluid Mech. 935, A19.CrossRefGoogle Scholar
Lin, Y.-F. & Jackson, A. 2021 Large-scale vortices and zonal flows in spherical rotating convection. J. Fluid Mech. 912, A46.CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Martin, D. & Nokes, R. 1989 A fluid-dynamical study of crystal settling in convecting magmas. J. Petrol. 30 (6), 14711500.CrossRefGoogle Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle-laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11, 529559.CrossRefGoogle Scholar
Maxey, M. 2017 Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 49, 171193.CrossRefGoogle Scholar
Mittal, R., Ni, R. & Seo, J.H. 2020 The flow physics of COVID-19. J. Fluid Mech. 894, F2.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22 (10), 103304.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.CrossRefGoogle Scholar
Motoori, Y., Wong, C.K. & Goto, S. 2022 Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. J. Fluid Mech. 942, A3.CrossRefGoogle Scholar
Oresta, P. & Prosperetti, A. 2013 Effects of particle settling on Rayleigh–Bénard convection. Phys. Rev. E 87 (6), 063014.CrossRefGoogle ScholarPubMed
Park, H.J., O'Keefe, K. & Richter, D.H. 2018 Rayleigh–Bénard turbulence modified by two-way coupled inertial, nonisothermal particles. Phys. Rev. Fluids 3 (3), 034307.CrossRefGoogle Scholar
Patočka, V., Calzavarini, E. & Tosi, N. 2020 Settling of inertial particles in turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 5 (11), 114304.CrossRefGoogle Scholar
Patočka, V., Tosi, N. & Calzavarini, E. 2022 Residence time of inertial particles in 3D thermal convection: implications for magma reservoirs. Earth Planet. Sci. Lett. 591, 117622.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M., Verzicco, R. & Orlandi, P. 2017 Mixed convection in turbulent channels with unstable stratification. J. Fluid Mech. 821, 482516.CrossRefGoogle Scholar
Sakievich, P.J., Peet, Y.T. & Adrian, R.J. 2020 Temporal dynamics of large-scale structures for turbulent Rayleigh–Bénard convection in a moderate aspect-ratio cylinder. J. Fluid Mech. 901, A31.CrossRefGoogle Scholar
Shishkina, O., Stevens, R.J.A.M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12 (7), 075022.CrossRefGoogle Scholar
Silano, G., Sreenivasan, K.R. & Verzicco, R. 2010 Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between $10^{-1}$ and $10^4$ and Rayleigh numbers between $10^5$ and $10^9$. J. Fluid Mech. 662, 409446.CrossRefGoogle Scholar
Stevens, R.J.A.M., Blass, A., Zhu, X.-J., Verzicco, R. & Lohse, D. 2018 Turbulent thermal superstructures in Rayleigh–Bénard convection. Phys. Rev. Fluids 3 (4), 041501.CrossRefGoogle Scholar
Sun, D.-F., Wan, Z.-H. & Sun, D.-J. 2024 Modulation of Rayleigh–Bénard convection with a large temperature difference by inertial nonisothermal particles. Phys. Fluids 36 (1), 017135.CrossRefGoogle Scholar
Tagawa, Y., Mercado, J.M., Prakash, V.N., Calzavarini, E., Sun, C. & Lohse, D. 2012 Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence. J. Fluid Mech. 693, 201215.CrossRefGoogle Scholar
Teimurazov, A., Singh, S., Su, S., Eckert, S., Shishkina, O. & Vogt, T. 2023 Oscillatory large-scale circulation in liquid-metal thermal convection and its structural unit. J. Fluid Mech. 977, A16.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Vogt, T., Horn, S., Grannan, A.M. & Aurnou, J.M. 2018 Jump rope vortex in liquid metal convection. Proc. Natl Acad. Sci. USA 115 (50), 1267412679.CrossRefGoogle ScholarPubMed
Wang, B.-F., Zhou, Q. & Sun, C. 2020 a Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci. Adv. 6 (21), eaaz8239.CrossRefGoogle ScholarPubMed
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Wang, Q., Chong, K.-L., Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2020 b From zonal flow to convection rolls in Rayleigh–Bénard convection with free-slip plates. J. Fluid Mech. 905, A21.CrossRefGoogle Scholar
Winchester, P., Dallas, V. & Howell, P.D. 2021 Zonal flow reversals in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Fluids 6 (3), 033502.CrossRefGoogle Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar
Xia, K.-Q., Huang, S.-D., Xie, Y.-C. & Zhang, L. 2023 Tuning heat transport via coherent structure manipulation: recent advances in thermal turbulence. Nat. Sci. Rev. 10 (6), nwad012.CrossRefGoogle ScholarPubMed
Xu, A. & Li, B.-T. 2023 Multi-GPU thermal lattice Boltzmann simulations using OpenACC and MPI. Intl J. Heat Mass Transfer 201, 123649.CrossRefGoogle Scholar
Xu, A., Shi, L. & Zhao, T.-S. 2017 Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Intl J. Heat Mass Transfer 109, 577588.CrossRefGoogle Scholar
Xu, A., Tao, S., Shi, L. & Xi, H.-D. 2020 Transport and deposition of dilute microparticles in turbulent thermal convection. Phys. Fluids 32 (8), 083301.CrossRefGoogle Scholar
Xu, A., Xu, B.-R. & Xi, H.-D. 2023 Wall-sheared thermal convection: heat transfer enhancement and turbulence relaminarization. J. Fluid Mech. 960, A2.CrossRefGoogle Scholar
Yang, W.-W., Wan, Z.-H., Zhou, Q. & Dong, Y.-H. 2022 a On the energy transport and heat transfer efficiency in radiatively heated particle-laden Rayleigh–Bénard convection. J. Fluid Mech. 953, A35.CrossRefGoogle Scholar
Yang, W.-W., Zhang, Y.-Z., Wang, B.-F., Dong, Y.-H. & Zhou, Q. 2022 b Dynamic coupling between carrier and dispersed phases in Rayleigh–Bénard convection laden with inertial isothermal particles. J. Fluid Mech. 930, A24.CrossRefGoogle Scholar
Yerragolam, G.S., Verzicco, R., Lohse, D. & Stevens, R.J.A.M. 2022 How small-scale flow structures affect the heat transport in sheared thermal convection. J. Fluid Mech. 944, A1.CrossRefGoogle Scholar
Zhang, H. 2024 Structure and coupling characteristics of multiple fields in dust storms. Acta Mechanica Sin. 40, 123339.CrossRefGoogle Scholar
Zhang, H., Cui, Y.-K. & Zheng, X.-J. 2023 How electrostatic forces affect particle behaviour in turbulent channel flows. J. Fluid Mech. 967, A8.CrossRefGoogle Scholar
Zhang, X., Van Gils, D.P.M., Horn, S., Wedi, M., Zwirner, L., Ahlers, G., Ecke, R.E., Weiss, S., Bodenschatz, E. & Shishkina, O. 2020 Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 124 (8), 084505.CrossRefGoogle ScholarPubMed
Zheng, X.-J. 2009 Mechanics of Wind-Blown Sand Movements. Springer Science and Business Media.CrossRefGoogle Scholar
Zhou, Q., Sun, C. & Xia, K.-Q. 2007 Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (7), 074501.CrossRefGoogle ScholarPubMed
Zhu, X.-J., Mathai, V., Stevens, R.J.A.M., Verzicco, R. & Lohse, D. 2018 Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Lett. 120 (14), 144502.CrossRefGoogle Scholar
Zwick, D. 2019 ppiclF: a parallel particle-in-cell library in Fortran. J. Open Source Softw. 4 (37), 1400.CrossRefGoogle Scholar
Supplementary material: File

Xu et al. supplementary movie 1

Temperature fields and particle positions in two-dimension.
Download Xu et al. supplementary movie 1(File)
File 10.5 MB
Supplementary material: File

Xu et al. supplementary movie 2

Slice of velocity component ν and particle positions in three-dimension.
Download Xu et al. supplementary movie 2(File)
File 9.5 MB
Supplementary material: File

Xu et al. supplementary material 3

Xu et al. supplementary material
Download Xu et al. supplementary material 3(File)
File 114.4 KB