Hostname: page-component-7857688df4-qjfxt Total loading time: 0 Render date: 2025-11-19T07:07:35.065Z Has data issue: false hasContentIssue false

Prediction of long-time single-mode Rayleigh–Taylor bubble evolution: a rotational flow model

Published online by Cambridge University Press:  19 November 2025

Changwen Liu
Affiliation:
HEDPS, Center for Applied Physics and Technology, School of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China State Key Laboratory for Turbulence and Complex Systems, School of Mechanics and Engineering Science, Peking University , Beijing 100871, PR China
Hongzhi Wu-Wang
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, School of Mechanics and Engineering Science, Peking University , Beijing 100871, PR China
Yousheng Zhang*
Affiliation:
HEDPS, Center for Applied Physics and Technology, School of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China Institute of Applied Physics and Computational Mathematics, Beijing 100094, PR China National Key Laboratory of Computational Physics, Beijing 100088, PR China
Zuoli Xiao*
Affiliation:
HEDPS, Center for Applied Physics and Technology, School of Mechanics and Engineering Science, Peking University, Beijing 100871, PR China State Key Laboratory for Turbulence and Complex Systems, School of Mechanics and Engineering Science, Peking University , Beijing 100871, PR China Nanchang Innovation Institute, Peking University, Nanchang 330008, PR China
*
Corresponding authors: Yousheng Zhang, qwwzys@163.com; Zuoli Xiao, z.xiao@pku.edu.cn
Corresponding authors: Yousheng Zhang, qwwzys@163.com; Zuoli Xiao, z.xiao@pku.edu.cn

Abstract

The nonlinear growth of perturbations in hydrodynamic interfacial instabilities can be of particular importance in both scientific research (e.g. supernova explosion) and engineering applications (e.g. inertial confinement fusion). One of the most significant issues in these instabilities is the long-time nonlinear bubble evolution of a single-mode Rayleigh–Taylor instability (RTI), which remains as an unsolved and challenging problem since Taylor’s seminal work more than seven decades ago. Introduced in this paper is an analytical model for the long-time evolution of bubble velocity, curvature and vorticity, which is established by considering the vorticity accumulation around the bubble in a bilaterally rotational flow system under the classical planar potential-flow theory framework. The proposed theoretical model incorporates not only the classical linear, nonlinear and quasi-steady stages, but the late re-acceleration stage. Meanwhile, the new model can capture the phenomenon of secondary velocity saturation following the stage of bubble re-acceleration. The good agreement between the present model and numerical simulations for all density ratios and dimensions confirms that the accumulation in vorticity tends to break the early stage buoyancy-drag equilibrium mechanism and leads to the establishment of a new equilibrium in the late-stage RTI.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abarzhi, S.I. 1995 On the stability of steady-state solutions of the nonlinear Schrödinger equation. J. Exp. Theore. Phys. (JETP) 80 (1), 132152.Google Scholar
Abarzhi, S.I. 1996 a Group-theoretical analysis of the Rayleigh–Taylor instability. J. Exp. Theor. Phys. (JETP) 83 (5), 10121032.Google Scholar
Abarzhi, S.I. 1996 b Group theory and nonlinear dynamics in Rayleigh–Taylor instability. Phys. Scripta T66, 238242.10.1088/0031-8949/1996/T66/044CrossRefGoogle Scholar
Abarzhi, S.I. 1998 Stabilization of nonlinear hydrodynamic instabilities by convection. Phys. Rev. Lett. 81 (2), 337340.10.1103/PhysRevLett.81.337CrossRefGoogle Scholar
Abarzhi, S.I. 1999 Stable steady flows in Rayleigh–Taylor instability. Phys. Rev. E 59, 17291735.10.1103/PhysRevE.59.1729CrossRefGoogle Scholar
Abarzhi, S.I. 2008 Review of nonlinear dynamics of the unstable fluid interface: conservation laws and group theory. Phys. Scr. 2008(T132), 014012.10.1088/0031-8949/2008/T132/014012CrossRefGoogle Scholar
Abarzhi, S.I., Glimm, J. & Lin, A.-D. 2003 Dynamics of two-dimensional Rayleigh–Taylor bubbles for fluids with a finite density contrast. Phys. Fluids 15 (8), 21902197.10.1063/1.1583732CrossRefGoogle Scholar
Abarzhi, S.I., Hill, D.L., Williams, K.C., Li, J.T., Remington, B.A., Martinez, D. & Arnett, W.D. 2023 Fluid dynamic mathematical aspects of supernova remnants. Phys. Fluids 35 (3), 034106.10.1063/5.0123930CrossRefGoogle Scholar
Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74, 534537.10.1103/PhysRevLett.74.534CrossRefGoogle ScholarPubMed
Banerjee, R., Mandal, L., Roy, S., Khan, M. & Gupta, M.R. 2011 Combined effect of viscosity and vorticity on single mode Rayleigh–Taylor instability bubble growth. Phys. Plasmas 18 (2), 022109.10.1063/1.3555523CrossRefGoogle Scholar
Betti, R. & Hurricane, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12 (5), 435448.10.1038/nphys3736CrossRefGoogle Scholar
Betti, R. & Sanz, J. 2006 Bubble acceleration in the ablative Rayleigh–Taylor instability. Phys. Rev. Lett. 97, 205002.10.1103/PhysRevLett.97.205002CrossRefGoogle ScholarPubMed
Bian, X., Aluie, H., Zhao, D.-X., Zhang, H.-S. & Livescu, D. 2020 Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity. Physica D 403, 132250.10.1016/j.physd.2019.132250CrossRefGoogle Scholar
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34 (1), 445445.10.1146/annurev.fluid.34.090101.162238CrossRefGoogle Scholar
Burrows, A. 2000 Supernova explosions in the universe. Nature 403 (6771), 727733.10.1038/35001501CrossRefGoogle ScholarPubMed
Cabot, W. & Cook, A. 2006 Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nat. Phys. 2, 562568.10.1038/nphys361CrossRefGoogle Scholar
Casey, D.T. et al. 2017 Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. Nat. Phys vol. 13, pp. 12271231.Google Scholar
Chan, W.H., Jain, S.S., Hwang, H., Naveh, A. & Abarzhi, S.I. 2023 Theory and simulations of linear and nonlinear two-dimensional Rayleigh–Taylor dynamics with variable acceleration. Phys. Fluids 35 (4), 042109.10.1063/5.0137462CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability Oxford Univ. Press.Google Scholar
Changwen, L., Zuoli, X. & Yousheng, Z. 2024 A review of research progresses on potential flow theory of single-mode fluid interfacial instabilities (in Chinese). SCIENTIA SINICA Physica, Mechanica and Astronomica 54 (10), 104702.10.1360/SSPMA-2024-0110CrossRefGoogle Scholar
Clery, D. 2015 Physics. Laser fusion, with a difference. Science 347 (6218), 111112.10.1126/science.347.6218.111CrossRefGoogle ScholarPubMed
Dimonte, G., Ramaprabhu, P. & Andrews, M. 2007 Rayleigh–Taylor instability with complex acceleration history. Phys. Rev. E 76, 046313.10.1103/PhysRevE.76.046313CrossRefGoogle ScholarPubMed
Ding, J.-C., T., S., Yang, J.-M., Lu, X.-Y., Zhai, Z.-G. & Luo, X.-S. 2017 Measurement of a Richtmyer–Meshkov instability at an air- ${\mathrm{SF}}_{6}$ interface in a semiannular shock tube. Phys. Rev. Lett. 119, 014501.10.1103/PhysRevLett.119.014501CrossRefGoogle Scholar
Glimm, J., Li, Xl & Lin, A.D. 2002 Nonuniform approach to terminal velocity for single mode Rayleigh–Taylor instability. Acta Math. Appl. Sinica 18, 18.10.1007/s102550200001CrossRefGoogle Scholar
Goncharov, V. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88 (13), 134502.10.1103/PhysRevLett.88.134502CrossRefGoogle ScholarPubMed
Gottlieb, S. & Shu, C.-W. 1998 Total variation diminishing Runge–Kutta schemes. Math. Comput. Am. Math. Soc. 67, 7385.10.1090/S0025-5718-98-00913-2CrossRefGoogle Scholar
Guo, W.X. & Zhang, Q. 2020 Universality and scaling laws among fingers at Rayleigh–Taylor and Richtmyer–Meshkov unstable interfaces in different dimensions. Physica D 403, 132304.10.1016/j.physd.2019.132304CrossRefGoogle Scholar
Hecht, J., Alon, U. & Shvarts, D. 1994 Potential flow models of Rayleigh–Taylor and Richtmyer–Meshkov bubble fronts. Phys. Fluids 6 (12), 40194030.10.1063/1.868391CrossRefGoogle Scholar
Isobe, H., Miyagoshi, T., Shibata, K. & Yokoyama, T. 2005 Filamentary structure on the Sun from the magnetic Rayleigh–Taylor instability. Nature 434, 478481.10.1038/nature03399CrossRefGoogle ScholarPubMed
Jacobs, J.W. & Sheeley, J.M. 1996 Experimental study of incompressible Richtmyer–Meshkov instability. Phys. Fluids 8 (2), 405415.10.1063/1.868794CrossRefGoogle Scholar
Jacobs, J.W. & Catton, I. 1988 Three-dimensional Rayleigh–Taylor instability Part 2. Experiment. J. Fluid Mech. 187, 353371.10.1017/S0022112088000461CrossRefGoogle Scholar
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.10.1006/jcph.1996.0130CrossRefGoogle Scholar
Krechetnikov, R. 2009 Rayleigh–Taylor and Richtmyer–Meshkov instabilities of flat and curved interfaces. J. Fluid Mech. 625, 387410.10.1017/S0022112009005771CrossRefGoogle Scholar
Kull, H.J. 1983 Bubble motion in the nonlinear Rayleigh–Taylor instability. Phys. Rev. Lett. 51, 14341437.10.1103/PhysRevLett.51.1434CrossRefGoogle Scholar
Kull, H.J. 1986 Nonlinear free-surface Rayleigh–Taylor instability. Phys. Rev. A 33 (3), 19571967.10.1103/PhysRevA.33.1957CrossRefGoogle ScholarPubMed
Layzer, D. 1955 On the instability of superposed fluids in a gravitational field. Astrophys. J. 122, 1.10.1086/146048CrossRefGoogle Scholar
Lherm, V., Deguen, R., Alboussière, T. & Landeau, M. 2022 Rayleigh–Taylor instability in impact cratering experiments. J. Fluid Mech. 937, A20.10.1017/jfm.2022.111CrossRefGoogle Scholar
Li, X.-L., Fu, Y.-W., Yu, C.-P. & Li, L. 2021 Statistical characteristics of turbulent mixing in spherical and cylindrical converging Richtmyer–Meshkov instabilities. J. Fluid Mech. 928, A10.10.1017/jfm.2021.818CrossRefGoogle Scholar
Liang, Y., Zhai, Z.-G., Ding, J.-C. & Luo, X.-S. 2019 Richtmyer–Meshkov instability on a quasi-single-mode interface. J. Fluid Mech. 872, 729751.10.1017/jfm.2019.416CrossRefGoogle Scholar
Liu, C.-W., Wu-Wang, H.-Z., Zhang, Y.S. & Xiao, Z.-L. 2023 a A decoupled mechanism of interface growth in single-mode hydrodynamic instabilities. J. Fluid Mech. 964, A37.10.1017/jfm.2023.393CrossRefGoogle Scholar
Liu, C.-W., Zhang, Y.S. & Xiao, Z.-L. 2023 b A unified theoretical model for spatiotemporal development of Rayleigh–Taylor and Richtmyer–Meshkov fingers. J. Fluid Mech. 954, A13.10.1017/jfm.2022.1000CrossRefGoogle Scholar
Liu, L.-L., Liang, Y., Ding, J.-C., Liu, N.-A. & Luo, X.-S. 2018 An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.10.1017/jfm.2018.628CrossRefGoogle Scholar
Luo, X.-S., Wang, X.-S. & Si, T. 2013 The Richtmyer–Meshkov instability of a three-dimensional interface with a minimum-surface feature. J. Fluid Mech. 722, R2.10.1017/jfm.2013.148CrossRefGoogle Scholar
Luo, X.-S., Zhang, F., Ding, J.-C., Si, T., Yang, J.-M., Zhai, Z.-G. & Wen, C.-Y. 2018 Long-term effect of Rayleigh–Taylor stabilization on converging Richtmyer–Meshkov instability. J. Fluid Mech. 849, 231244.10.1017/jfm.2018.424CrossRefGoogle Scholar
Matsuo, K., Sano, T., Nagatomo, H., Somekawa, T., Law, K.-F., Morita, H., Arikawa, Y. & Fujioka, S. 2021 Enhancement of ablative Rayleigh–Taylor instability growth by thermal conduction suppression in a magnetic field. Phys. Rev. Lett. 127, 165001.10.1103/PhysRevLett.127.165001CrossRefGoogle ScholarPubMed
Matsuoka, C., Nishihara, K. & Fukuda, Y. 2003 Erratum: nonlinear evolution of an interface in the Richtmyer–Meshkov instability. Phys. Rev. E 68, 029902.10.1103/PhysRevE.68.029902CrossRefGoogle Scholar
Mikaelian, K.O. 1998 Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. Lett. 80, 508511.10.1103/PhysRevLett.80.508CrossRefGoogle Scholar
Mikaelian, K.O. 2003 Explicit expressions for the evolution of single-mode Rayleigh–Taylor and Richtmyer–Meshkov instabilities at arbitrary Atwood numbers. Phys. Rev. E 67, 026319.10.1103/PhysRevE.67.026319CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2008 Limitations and failures of the Layzer model for hydrodynamic instabilities. Phys. Rev. E 78, 015303.10.1103/PhysRevE.78.015303CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2009 Nonlinear hydrodynamic interface instabilities driven by time-dependent accelerations. Phys. Rev. E 79, 065303.10.1103/PhysRevE.79.065303CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 2010 Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Phys. Rev. E 81, 016325.10.1103/PhysRevE.81.016325CrossRefGoogle ScholarPubMed
Ni, W., Zeng, Q. & Zhang, Y. 2023 Dependence of high-density-ratio Rayleigh–Taylor spike on initial perturbations. Acta Mech. Sin. 39 (3), 322181.10.1007/s10409-022-22181-xCrossRefGoogle Scholar
Pimentel-Garcia, J.C. 2023 The full multi-wake vortex lattice method: a detached flow model based on potential flow theory. Adv. Aerodyn. 5, 22.10.1186/s42774-023-00153-1CrossRefGoogle Scholar
Ramaprabhu, P. & Dimonte, G. 2005 Single-mode dynamics of the Rayleigh–Taylor instability at any density ratio. Phys. Rev. E 71, 036314.10.1103/PhysRevE.71.036314CrossRefGoogle ScholarPubMed
Ramaprabhu, P., Dimonte, G. & Andrews, M.J. 2005 A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 536, 285319.10.1017/S002211200500488XCrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G., Woodward, P., Fryer, C., Rockefeller, G., Muthuraman, K., Lin, P.-H. & Jayaraj, J. 2012 The late-time dynamics of the single-mode Rayleigh–Taylor instability. Phys. Fluids 24 (7), 074107.10.1063/1.4733396CrossRefGoogle Scholar
Ramaprabhu, P., Karkhanis, V., Banerjee, R., Varshochi, H., Khan, M. & Lawrie, A.G.W. 2016 Evolution of the single-mode Rayleigh–Taylor instability under the influence of time-dependent accelerations. Phys. Rev. E 93, 013118.10.1103/PhysRevE.93.013118CrossRefGoogle ScholarPubMed
Rayleigh. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc s1–14 (1), 170177.Google Scholar
Reckinger, S.J., Livescu, D. & Vasilyev, O.V. 2011 Simulations of compressible Rayleigh–Taylor instability using the adaptive wavelet collocation method. Bull. Am. Phys. Soc. 64.Google Scholar
Ristorcelli, J.R. & Clark, T.T. 2004 Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213253.10.1017/S0022112004008286CrossRefGoogle Scholar
Roe, P.L. 1981 Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (2), 357372.10.1016/0021-9991(81)90128-5CrossRefGoogle Scholar
Sabet, N., Hassanzadeh, H., De Wit, A. & Abedi, J. 2021 Scalings of Rayleigh–Taylor instability at large viscosity contrasts in porous media. Phys. Rev. Lett. 126, 094501.10.1103/PhysRevLett.126.094501CrossRefGoogle Scholar
Sanders, R., Morano, E. & Druguet, M.-C. 1998 Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics. J. Comput. Phys. 145 (2), 511537.10.1006/jcph.1998.6047CrossRefGoogle Scholar
Sharp, D.H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12-IN10 (1–3), IN1,11-IN1,11–10–10.10.1016/0167-2789(84)90510-4CrossRefGoogle Scholar
Sohn, S.-I. 2003 Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E 67, 026301.10.1103/PhysRevE.67.026301CrossRefGoogle ScholarPubMed
Sohn, S.-I. 2004 Vortex model and simulations for Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E 69, 036703.10.1103/PhysRevE.69.036703CrossRefGoogle ScholarPubMed
Sohn, S.-I. 2009 Effects of surface tension and viscosity on the growth rates of Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E 80, 055302.10.1103/PhysRevE.80.055302CrossRefGoogle ScholarPubMed
Sohn, S.-I. 2011 Late-time vortex dynamics of Rayleigh–Taylor instability. J. Phys. Soc. Japan 80, 084401.10.1143/JPSJ.80.084401CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192196.Google Scholar
Uchiyama, Y., Aharonian, F.A., Tanaka, T., Takahashi, T. & Maeda, Y. 2007 Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449, 576578.10.1038/nature06210CrossRefGoogle Scholar
Wei, T. & Livescu, D. 2012 Late-time quadratic growth in single-mode Rayleigh–Taylor instability. Phys. Rev. E 86, 046405.10.1103/PhysRevE.86.046405CrossRefGoogle ScholarPubMed
Williams, K.C. & Abarzhi, S.I. 2021 Effect of dimensionality and symmetry on scale-dependent dynamics of Rayleigh–Taylor instability. Fluid Dyn. Res. 53 (3), 035507.10.1088/1873-7005/ac06d7CrossRefGoogle Scholar
Williams, K.C. & Abarzhi, S.I. 2022 Scale-dependent dynamics of Rayleigh–Taylor instability: group theory renormalization. Frontiers in Applied Mathematics and Statistics 7, 735526.Google Scholar
Wolfram Research Inc. 2017 Mathematica, Version 11.2. Champaign, IL, 2017.Google Scholar
Xie, H., Xiao, M. & Zhang, Y. 2024 A new idea for the unified rans predictions of turbulent mixing induced by interfacial instabilities (in Chinese). Acta Aerodynamica Sinica 42 (9), 113.Google Scholar
Yan, R., Betti, R., Sanz, J., Aluie, H., Liu, B. & Frank, A. 2016 Three-dimensional single-mode nonlinear ablative Rayleigh–Taylor instability. Phys. Plasmas 23 (2), 022701.10.1063/1.4940917CrossRefGoogle Scholar
Yan, Z., Fu, Y.-W., Wang, L.-F., Yu, C.-P. & Li, X.-L. 2022 Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 941, A55.10.1017/jfm.2022.329CrossRefGoogle Scholar
Zhang, Q. 1998 Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett. 81, 33913394.10.1103/PhysRevLett.81.3391CrossRefGoogle Scholar
Zhang, Q., Deng, S.Y. & Guo, W.X. 2018 Quantitative theory for the growth rate and amplitude of the compressible Richtmyer–Meshkov instability at all density ratios. Phys. Rev. Lett. 121, 174502.10.1103/PhysRevLett.121.174502CrossRefGoogle ScholarPubMed
Zhang, Q. & Guo, W.X. 2016 Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J. Fluid Mech. 786, 4761.10.1017/jfm.2015.641CrossRefGoogle Scholar
Zhang, Q. & Guo, W.X. 2022 Quantitative theory for spikes and bubbles in the Richtmyer–Meshkov instability at arbitrary density ratios. Phys. Rev. Fluids 7, 093904.10.1103/PhysRevFluids.7.093904CrossRefGoogle Scholar
Zhang, Y.-S., He, Z.-W., Xie, H.-S., Xiao, M.-J. & Tian, B.-L. 2020 Methodology for determining coefficients of turbulent mixing model. J. Fluid Mech. 905, A26.10.1017/jfm.2020.726CrossRefGoogle Scholar
Zhang, Q. & Sohn, S.-I. 1996 An analytical nonlinear theory of Richtmyer–Meshkov instability. Phys. Lett. A 212 (3), 149155.10.1016/0375-9601(96)00021-7CrossRefGoogle Scholar
Zhang, Q. & Sohn, S.-I. 1997 Padé approximation to an interfacial fluid mixing problem. Appl. Maths Lett. 10 (5), 121127.10.1016/S0893-9659(97)00094-3CrossRefGoogle Scholar
Zhang, Y., Le, J. & Tian, Y. 2024 Study on atomization characteristics of a kerosene jet in a supersonic crossflow. Adv. Aerodyn. 6, 4.10.1186/s42774-023-00164-yCrossRefGoogle Scholar
Zhao, Z.-Y., Wang, P., Liu, N.-S. & Lu, X.-Y. 2020 Analytical model of nonlinear evolution of single-mode Rayleigh–Taylor instability in cylindrical geometry. J. Fluid Mech. 900, A24.10.1017/jfm.2020.526CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.Google Scholar
Zhou, Y. 2024 Hydrodynamic Instabilities and Turbulence: Rayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing. Cambridge University Press.10.1017/9781108779135CrossRefGoogle Scholar
Zhou, Y., Clark, T.T., Clark, D.S., Gail Glendinning, S., Aaron Skinner, M., Huntington, C.M., Hurricane, O.A., Dimits, A.M. & Remington, B.A. 2019 Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26 (8), 080901.10.1063/1.5088745CrossRefGoogle Scholar
Zhou, Y., Sadler, J. & Hurricane, O. 2024 Instabilities and mixing in inertial confinement fusion. Annu. Rev. Fluid Mech. 57, 197225.10.1146/annurev-fluid-022824-110008CrossRefGoogle Scholar
Zhou, Y. et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: A journey through scales. Physica D 423, 132838.10.1016/j.physd.2020.132838CrossRefGoogle Scholar
Zufiria, J.A. 1988 Bubble competition in Rayleigh–Taylor instability. Phys. Fluids 31 (3), 440446.10.1063/1.866825CrossRefGoogle Scholar