Hostname: page-component-5b777bbd6c-skqgd Total loading time: 0 Render date: 2025-06-22T11:48:10.012Z Has data issue: false hasContentIssue false

Pseudo-turbulence induced by settling spheroids in a quiescent fluid

Published online by Cambridge University Press:  13 May 2025

Xinyu Jiang
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
Luca Brandt
Affiliation:
Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, 10129 Turin, Italy FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
Chunxiao Xu
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
Lihao Zhao*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China State Key Laboratory of Advanced Space Propulsion, Tsinghua University, 100084 Beijing, PR China
*
Corresponding author: Lihao Zhao, zhaolihao@tsinghua.edu.cn

Abstract

In this study, we investigate the sedimentation of spheroidal particles in an initially quiescent fluid by means of particle-resolved direct numerical simulations. Settling particles with three different shapes – oblate spheroid, sphere and prolate spheroid – but fixed Galileo number $Ga=80$ and density ratio $\gamma =2$ at volume fraction $\phi =1\%$ are considered. Oblate and prolate particles are found to form column-like clusters as a consequence of the wake-induced hydrodynamic interactions in the suspension. This effect, together with the change of particle orientation, enhances the mean settling velocity of the dispersed phase. In contrast, spherical particles do not exhibit clustering, and settle with hindered velocity in the suspension. Furthermore, we focus on the pseudo-turbulence induced by the settling particles. We report a non-Gaussian distribution of the fluid velocity and a robust $-3$ power law of the energy spectra. By scrutinizing the scale-by-scale budget, we find that the anisotropy of the particle-induced pseudo-turbulence is manifested not only by the uneven allocation of turbulence kinetic energy among the different velocity components, but also by the anisotropic distribution of energy in spectral space. The fluid–particle interactions inject energy into the vertical velocity component, thus sustaining the turbulence, while pressure redistributes the kinetic energy among the different velocity components. The clustering of oblate/prolate particles significantly increases the energy input at large scales, forcing elongated flow structures. Moreover, the redistribution and nonlinear transfer of the energy are also intensified in the presence of particle clustering, which reduces the anisotropy of the particle-induced pseudo-turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amoura, Z., Besnaci, C., Risso, F. & Roig, V. 2017 Velocity fluctuations generated by the flow through a random array of spheres: a model of bubble-induced agitation. J. Fluid Mech. 823, 592616.CrossRefGoogle Scholar
Anoukou, K., Brenner, R., Hong, F., Pellerin, M. & Danas, K. 2018 Random distribution of polydisperse ellipsoidal inclusions and homogenization estimates for porous elastic materials. Comput. Struct. 210, 87101.CrossRefGoogle Scholar
Ardekani, M.N., Costa, P., Breugem, W.P. & Brandt, L. 2016 Numerical study of the sedimentation of spheroidal particles. Intl J. Multiphase Flow 87, 1634.CrossRefGoogle Scholar
Batchelor, G.K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52 (2), 245268.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.CrossRefGoogle Scholar
Breugem, W.-P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 (13), 44694498.CrossRefGoogle Scholar
Caflisch, R.E. & Luke, J.H.C. 1985 Variance in the sedimentation speed of a suspension. Phys. Fluids. 28 (3), 759760.CrossRefGoogle Scholar
Capecelatro, J., Desjardins, O. & Fox, R.O. 2014 Numerical study of collisional particle dynamics in cluster-induced turbulence. J. Fluid Mech. 747, R2.CrossRefGoogle Scholar
Capecelatro, J., Desjardins, O. & Fox, R.O. 2015 On fluid–particle dynamics in fully developed cluster-induced turbulence. J.Fluid Mech. 780, 578635.CrossRefGoogle Scholar
Chiarini, A. & Rosti, M.E. 2024 Finite-size inertial spherical particles in turbulence. J. Fluid Mech. 988, A17.CrossRefGoogle Scholar
Chouippe, A. & Uhlmann, M. 2015 Forcing homogeneous turbulence in direct numerical simulation of particulate flow with interface resolution and gravity. Phys. Fluids. 27 (12), 123301.CrossRefGoogle Scholar
Costa, P., Boersma, B.J., Westerweel, J. & Breugem, W.-P. 2015 Collision model for fully resolved simulations of flows laden with finite-size particles. Phys. Rev. E 92 (5), 053012.CrossRefGoogle ScholarPubMed
Crialesi-Esposito, M., Rosti, M.E., Chibbaro, S. & Brandt, L. 2022 Modulation of homogeneous and isotropic turbulence in emulsions. J. Fluid Mech. 940, A19.CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech. 778, 133188.CrossRefGoogle Scholar
Di Felice, R. 1999 The sedimentation velocity of dilute suspensions of nearly monosized spheres. Intl J. Multiphase Flow 25 (4), 559574.CrossRefGoogle Scholar
Dodds, D., Sarhan, A.R. & Naser, J. 2020 Experimental and numerical study of drag forces on particles in clusters. Powder Technol. 371, 195208.CrossRefGoogle Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44 (1), 97121.CrossRefGoogle Scholar
Ferenc, J.-S. & Néda, Z. 2007 On the size distribution of Poisson Voronoï cells. Physica A: Stat. Mech. Applics. 385 (2), 518526.CrossRefGoogle Scholar
Fornari, W., Ardekani, M.N. & Brandt, L. 2018 Clustering and increased settling speed of oblate particles at finite Reynolds number. J. Fluid Mech. 848, 696721.CrossRefGoogle Scholar
Fornari, W., Picano, F. & Brandt, L. 2016 Sedimentation of finite-size spheres in quiescent and turbulent environments. J. Fluid Mech. 788, 640669.CrossRefGoogle Scholar
Fornari, W., Zade, S., Brandt, L. & Picano, F. 2019 Settling of finite-size particles in turbulence at different volume fractions. Acta Mechanica 230 (2), 413430.CrossRefGoogle Scholar
Fortes, A.F., Joseph, D.D. & Lundgren, T.S. 1987 Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mech. 177, 467483.CrossRefGoogle Scholar
Fröhlich, K., Meinke, M. & Schröder, W. 2020 Correlations for inclined prolates based on highly resolved simulations. J. Fluid Mech. 901, A5.CrossRefGoogle Scholar
Garside, J. & Al-Dibouni, M.R. 1977 Velocity-voidage relationships for fluidization and sedimentation in solid–liquid systems. Ind. Engng Chem. Process Des. Dev. 16 (2), 206214.CrossRefGoogle Scholar
Gualtieri, P., Battista, F. & Casciola, C.M. 2017 Turbulence modulation in heavy-loaded suspensions of tiny particles. Phys. Rev. Fluids 2 (3), 034304.CrossRefGoogle Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C.M. 2013 Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech. 715, 134162.CrossRefGoogle Scholar
Guazzelli, É. & Hinch, J. 2011 Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43 (1), 97116.CrossRefGoogle Scholar
Hidman, N., Ström, H., Sasic, S. & Sardina, G. 2023 Assessing passive scalar dynamics in bubble-induced turbulence using direct numerical simulations. J. Fluid Mech. 962, A32.CrossRefGoogle Scholar
Höfler, K. & Schwarzer, S. 2000 Navier–Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries. Phys. Rev. E 61 (6), 71467160.CrossRefGoogle ScholarPubMed
Huisman, S.G., Barois, T., Bourgoin, M., Chouippe, A., Doychev, T., Huck, P., Morales, C.E.B., Uhlmann, M. & Volk, R. 2016 Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid. Phys. Rev. Fluids 1 (7), 074204.CrossRefGoogle Scholar
Innocenti, A., Jaccod, A., Popinet, S. & Chibbaro, S. 2021 Direct numerical simulation of bubble-induced turbulence. J. Fluid Mech. 918, A23.CrossRefGoogle Scholar
Jeffrey, D.J. 1982 Low‐Reynolds‐number flow between converging spheres. Mathematika 29 (1), 5866.CrossRefGoogle Scholar
Jenny, M., Duek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.CrossRefGoogle Scholar
Jiang, X., Huang, W., Xu, C. & Zhao, L. 2024 a A flow-reconstruction based approach for the computation of hydrodynamic stresses on immersed body surface. J. Comput. Phys. 508, 113025.CrossRefGoogle Scholar
Jiang, X., Xu, C. & Zhao, L. 2024 b Prolate spheroids settling in a quiescent fluid: clustering, microstructures and collisions. J. Fluid Mech. 1000, A49.CrossRefGoogle Scholar
Jiang, X., Xu, C. & Zhao, L. 2024 c Settling and collision of spheroidal particles with an offset mass centre in a quiescent fluid. J. Fluid Mech. 984, A40.CrossRefGoogle Scholar
Kajishima, T. 2004 Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence. Intl J. Heat Fluid Flow 25 (5), 721728.CrossRefGoogle Scholar
Kajishima, T. & Takiguchi, S. 2002 Interaction between particle clusters and particle-induced turbulence. Intl J. Heat Fluid Flow 23 (5), 639646.CrossRefGoogle Scholar
Kim, K., Baek, S.-J. & Sung, H.J. 2002 An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 38 (2), 125138.CrossRefGoogle Scholar
Koch, D.L. & Hill, R.J. 2001 Inertial effects in suspension and porous-media flows. Annu. Rev. Fluid Mech. 33 (1), 619647.CrossRefGoogle Scholar
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222, 95118.CrossRefGoogle Scholar
Le Roy De Bonneville, F., Zamansky, R., Risso, F., Boulin, A. & Haquet, J.-F. 2021 Numerical simulations of the agitation generated by coarse-grained bubbles moving at large Reynolds number. J. Fluid Mech. 926, A20.CrossRefGoogle Scholar
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 555.CrossRefGoogle Scholar
Martínez-Mercado, J., Palacios-Morales, C.A. & Zenit, R. 2007 Measurement of pseudoturbulence intensity in monodispersed bubbly liquids for $10 \lt Re \lt 500$ . Phys. Fluids. 19 (10), 103302.CrossRefGoogle Scholar
Mehrabadi, M., Tenneti, S., Garg, R. & Subramaniam, S. 2015 Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas–solid flow: fixed particle assemblies and freely evolving suspensions. J. Fluid Mech. 770, 210246.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids. 22 (10), 103304.CrossRefGoogle Scholar
Moriche, M., Hettmann, D., García-Villalba, M. & Uhlmann, M. 2023 On the clustering of low-aspect-ratio oblate spheroids settling in ambient fluid. J. Fluid Mech. 963, A1.CrossRefGoogle Scholar
Pandey, V., Mitra, D. & Perlekar, P. 2023 Kolmogorov turbulence coexists with pseudo-turbulence in buoyancy-driven bubbly flows. Phys. Rev. Lett. 131 (11), 114002.CrossRefGoogle ScholarPubMed
Pandey, V., Ramadugu, R. & Perlekar, P. 2020 Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows. J. Fluid Mech. 884, R6.CrossRefGoogle Scholar
Pruppacher, H.R. & Klett, J.D. 2010 Microphysics of Clouds and Precipitation. Springer.CrossRefGoogle Scholar
Ramirez, G., Burlot, A., Zamansky, R., Bois, G. & Risso, F. 2024 Spectral analysis of dispersed multiphase flows in the presence of fluid interfaces. Intl J. Multiphase Flow 177, 104860.CrossRefGoogle Scholar
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.CrossRefGoogle Scholar
Richardson, J.F. & Zaki, W.N. 1954 The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Engng Sci. 3 (2), 6573.CrossRefGoogle Scholar
Risso, F. 2011 Theoretical model for k −3 spectra in dispersed multiphase flows. Phys. Fluids. 23 (1), 011701.CrossRefGoogle Scholar
Risso, F. 2018 Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50 (1), 2548.CrossRefGoogle Scholar
Roghair, I., Mercado, J.M., van Sint Annaland, M., Kuipers, H., Sun, C. & Lohse, D. 2011 Energy spectra and bubble velocity distributions in pseudo-turbulence: numerical simulations vs. experiments. Intl J. Multiphase Flow 37 (9), 10931098.CrossRefGoogle Scholar
Roma, A.M., Peskin, C.S. & Berger, M.J. 1999 An adaptive version of the immersed boundary method. J. Comput. Phys. 153 (2), 509534.CrossRefGoogle Scholar
Rossi, E., Bagheri, G., Beckett, F. & Bonadonna, C. 2021 The fate of volcanic ash: premature or delayed sedimentation? Nat. Commun. 12 (1), 1303.CrossRefGoogle ScholarPubMed
Seyed-Ahmadi, A. & Wachs, A. 2021 Sedimentation of inertial monodisperse suspensions of cubes and spheres. Phys. Rev. Fluids 6 (4), 044306.CrossRefGoogle Scholar
Shajahan, T. & Breugem, W.-P. 2023 Inertial effects in sedimenting suspensions of solid spheres in a liquid. Intl J. Multiphase Flow 166, 104498.CrossRefGoogle Scholar
Tagawa, Y., Roghair, I., Prakash, V.N., van Sint Annaland, M., Kuipers, H., Sun, C. & Lohse, D. 2013 The clustering morphology of freely rising deformable bubbles. J. Fluid Mech. 721, R2.CrossRefGoogle Scholar
Trudnowska, E., Lacour, L., Ardyna, M., Rogge, A., Irisson, J.O., Waite, A.M., Babin, M. & Stemmann, L. 2021 Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12 (1), 2816.CrossRefGoogle ScholarPubMed
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.CrossRefGoogle Scholar
Uhlmann, M. 2020 Voronoï tessellation analysis of sets of randomly placed finite-size spheres. Physica A 555, 124618.CrossRefGoogle Scholar
Uhlmann, M. & Doychev, T. 2014 Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752, 310348.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249276.CrossRefGoogle Scholar
Wang, L.-P., Ayala, O., Gao, H., Andersen, C. & Mathews, K.L. 2014 Study of forced turbulence and its modulation by finite-size solid particles using the lattice Boltzmann approach. Comput. Maths Applics. 67 (2), 363380.CrossRefGoogle Scholar
Yin, X. & Koch, D.L. 2007 Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds numbers. Phys. Fluids. 19 (9), 093302.CrossRefGoogle Scholar
Zaidi, A.A. 2018 Particle velocity distributions and velocity fluctuations of non-Brownian settling particles by particle-resolved direct numerical simulation. Phys. Rev. E 98 (5), 053103.CrossRefGoogle Scholar
Zaidi, A.A. 2021 Domain size effects on particle microstructures settling in non-Stokes regime. In International Bhurban Conference on Applied Sciences and Technologies (IBCAST), pp. 748753.Google Scholar
Zaidi, A.A., Tsuji, T. & Tanaka, T. 2014 Direct numerical simulation of finite sized particles settling for high Reynolds number and dilute suspension. Intl J. Heat Fluid Flow 50, 330341.CrossRefGoogle Scholar
Zamansky, R., Le Roy De Bonneville, F. & Risso, F. 2024 Turbulence induced by a swarm of rising bubbles from coarse-grained simulations. J. Fluid Mech. 984, A68.CrossRefGoogle Scholar
Zastawny, M., Mallouppas, G., Zhao, F. & van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.CrossRefGoogle Scholar
Zhou, Z.Y., Pinson, D., Zou, R.P. & Yu, A.B. 2011 Discrete particle simulation of gas fluidization of ellipsoidal particles. Chem. Engng Sci. 66 (23), 61286145.CrossRefGoogle Scholar