Hostname: page-component-857557d7f7-nhjpk Total loading time: 0 Render date: 2025-12-12T03:48:00.872Z Has data issue: false hasContentIssue false

Role of settling inertial particles in modulating flow structures and drag in Taylor–Couette turbulence

Published online by Cambridge University Press:  21 November 2025

Hao Jiang
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200072, PR China
Zhi-Ming Lu
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200072, PR China Shanghai Institute of Aircraft Mechanics and Control , Zhangwu Road, Shanghai 200092, PR China
Yuan Ma
Affiliation:
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, PR China
Kai Leong Chong*
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University , Shanghai 200072, PR China Shanghai Institute of Aircraft Mechanics and Control , Zhangwu Road, Shanghai 200092, PR China
*
Corresponding author: Kai Leong Chong, klchong@shu.edu.cn

Abstract

The modulation of drag through dispersed phases in wall turbulence has been a longstanding focus. This study examines the effects of particle Stokes number ($\textit{St}$) and Froude number ($\textit{Fr}$) on drag modulation in turbulent Taylor–Couette (TC) flow, using a two-way coupled Eulerian–Lagrangian approach with Reynolds number ${\textit{Re}}_i = r_i \omega _i d/\nu$ fixed at 3500. Here, $\textit{St}$ characterises particle inertia relative to the flow time scale, while $\textit{Fr}$ describes the balance between gravitational settling and inertial forces in the flow. For light particles (small $\textit{St}$), drag reduction is observed in the TC system, exhibiting a non-monotonic dependence on $\textit{Fr}$. Specifically, drag reduction initially increases and then decreases with stronger influence of gravitational settling (characterised by inverse of $\textit{Fr}$), indicating the presence of an optimal $\textit{Fr}$ for maximum drag reduction. For heavy particles, a similar non-monotonic trend can also be observed, but significant drag enhancement results at large $\textit{Fr}^{-1}$. We further elucidate the role of settling particles in modulating the flow structure in TC flow by decomposing the advective flux into contributions from coherent Taylor vortices and background turbulent fluctuations. At moderate effects of particle inertia and gravitational settling, particles suppress the coherence of Taylor vortices which markedly reduces angular velocity transport and thus leads to drag reduction. However, with increasing influence of particle inertia and gravitational settling, the flow undergoes abrupt change. Rapidly settling particles disrupt the Taylor vortices, shifting the bulk flow from a vortex-dominated regime to one characterised by particle-induced turbulence. With the dominance of particle-induced turbulence, velocity plumes – initially transported by small-scale Görtler vortices near the cylinder wall and large-scale Taylor vortices in the bulk region – are instead carried into the bulk by turbulent fluctuations driven by the settling particles. As a result, angular velocity transport is enhanced, leading to enhanced drag. These findings offer new insights for tailoring drag in industrial applications involving dispersed phases in wall-bounded turbulent flows.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Assen, M.P., Ng, C.S., Will, J.B., Stevens, R.J., Lohse, D. & Verzicco, R. 2022 Strong alignment of prolate ellipsoids in Taylor–Couette flow. J. Fluid Mech. 935, A7.10.1017/jfm.2021.1134CrossRefGoogle Scholar
Bakhuis, D., Verschoof, R.A., Mathai, V., Huisman, S.G., Lohse, D. & Sun, C. 2018 Finite-sized rigid spheres in turbulent Taylor–Couette flow: effect on the overall drag. J. Fluid Mech. 850, 246261.10.1017/jfm.2018.462CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.10.1146/annurev.fluid.010908.165243CrossRefGoogle Scholar
Baroudi, L., Majji, M.V. & Morris, J.F. 2020 Effect of inertial migration of particles on flow transitions of a suspension Taylor–Couette flow. Phys. Rev. Fluids. 5 (11), 114303.10.1103/PhysRevFluids.5.114303CrossRefGoogle Scholar
Baroudi, L., Majji, M.V., Peluso, S. & Morris, J.F. 2023 Taylor–Couette flow of hard-sphere suspensions: overview of current understanding. Phil. Trans. R. Soc. A 381 (2243), 20220125.10.1098/rsta.2022.0125CrossRefGoogle ScholarPubMed
Blaauw, L.J., Lohse, D. & Huisman, S.G. 2025 Salts promote or inhibit bubbly drag reduction in turbulent Taylor–Couette flows. Intl J. Multiphase Flow. 184, 105078.10.1016/j.ijmultiphaseflow.2024.105078CrossRefGoogle Scholar
Bragg, A., Richter, D. & Wang, G. 2021 Settling strongly modifies particle concentrations in wall-bounded turbulent flows even when the settling parameter is asymptotically small. Phys. Rev. Fluids. 6 (12), 124301.10.1103/PhysRevFluids.6.124301CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.10.1146/annurev-fluid-030121-021103CrossRefGoogle Scholar
Brauckmann, H.J. & Eckhardt, B. 2013 Direct numerical simulations of local and global torque in Taylor–Couette flow up to Re = 30 000. J. Fluid Mech. 718, 398427.10.1017/jfm.2012.618CrossRefGoogle Scholar
Carlotti, S. & Maggi, F. 2021 Experimental techniques for characterization of particles in plumes of sub-scale solid rocket motors. Acta Astronaut. 186, 496507.10.1016/j.actaastro.2021.06.011CrossRefGoogle Scholar
Chouippe, A., Climent, É., Legendre, D. & Gabillet, C. 2014 Numerical simulation of bubble dispersion in turbulent Taylor–Couette flow. Phys. Fluids. 26 (4), 043304.10.1063/1.4871728CrossRefGoogle Scholar
Clarke, A. & Davoodi, M. 2025 The movement of particles in Taylor–Couette flow of complex fluids. J. Non-Newtonian Fluid Mech. 335, 105354.10.1016/j.jnnfm.2024.105354CrossRefGoogle Scholar
Costa, P., Brandt, L. & Picano, F. 2021 Near-wall turbulence modulation by small inertial particles. J. Fluid Mech. 922, A9.10.1017/jfm.2021.507CrossRefGoogle Scholar
Dash, A., Anantharaman, A. & Poelma, C. 2020 Particle-laden Taylor–Couette flows: higher-order transitions and evidence for azimuthally localized wavy vortices. J. Fluid Mech. 903, A20.10.1017/jfm.2020.649CrossRefGoogle Scholar
Dong, S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373393.10.1017/S0022112007007367CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.10.1017/S0022112007005629CrossRefGoogle Scholar
Gao, W., Wang, M. & Parsani, M. 2024 Drag modulation by inertial particles in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids. 36 (10), 105154.10.1063/5.0236624CrossRefGoogle Scholar
Garbin, V., Bothe, D., Brenn, G., Casciola, C.M., Colin, C., Marengo, M., Risso, F., Tryggvason, G. & Lohse, D. 2025 Bubbles and bubbly flows. Intl J. Multiphase Flow. 190, 105240.10.1016/j.ijmultiphaseflow.2025.105240CrossRefGoogle Scholar
Gatignol, R. 1983 The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Mec. Theor. Appl. 9 (2), 143160.Google Scholar
Grossmann, S., Lohse, D. & Sun, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.10.1146/annurev-fluid-122414-034353CrossRefGoogle Scholar
Huisman, S.G., Scharnowski, S., Cierpka, C., Kähler, C.J., Lohse, D. & Sun, C. 2013 Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110 (26), 264501.10.1103/PhysRevLett.110.264501CrossRefGoogle ScholarPubMed
Huisman, S.G., Van Gils, D.P., Grossmann, S., Sun, C. & Lohse, D. 2012 Ultimate turbulent Taylor-Couette flow. Phys. Rev. Lett. 108 (2), 024501.10.1103/PhysRevLett.108.024501CrossRefGoogle ScholarPubMed
Jiang, H., Lu, Z.-M., Wang, B.-F., Meng, X.H., Shen, J. & Chong, K.L. 2025 Spatial distribution of inertial particles in turbulent Taylor–Couette flow. J. Fluid Mech. 1006, A2.10.1017/jfm.2024.1143CrossRefGoogle Scholar
Kim, S., Oshima, N., Park, H.J. & Murai, Y. 2021 Direct numerical simulation of frictional drag modulation in horizontal channel flow subjected to single large-sized bubble injection. Intl J. Multiphase Flow. 145, 103838.10.1016/j.ijmultiphaseflow.2021.103838CrossRefGoogle Scholar
Liao, Z., Lin, F., Liu, L., Liu, N. & Lu, X. 2025 Turbulence modulation in particle-laden channel flow: the particle inertial effects. J. Fluid Mech. 1015, A55.10.1017/jfm.2025.10340CrossRefGoogle Scholar
Lin, F., Song, J., Liao, Z.-M., Liu, N., Lu, X.-Y. & Khomami, B. 2025 Asymptotic drag reduction states in turbulent Taylor vortex flow of dilute polymeric solutions: interplay between large-scale structures and polymer chains dynamics. J. Fluid Mech. 1009, A24.10.1017/jfm.2025.186CrossRefGoogle Scholar
Lin, F., Song, J., Liu, N., Liu, L., Lu, X.-Y. & Khomami, B. 2024 a Keplerian turbulence in Taylor–Couette flow of dilute polymeric solutions. J. Fluid Mech. 1000, R3.10.1017/jfm.2024.1048CrossRefGoogle Scholar
Lin, F., Song, J., Liu, N., Wan, Z., Lu, X.-Y. & Khomami, B. 2024 b Maximum drag enhancement asymptote in turbulent Taylor–Couette flow of dilute polymeric solutions. J. Non-Newtonian Fluid Mech. 323, 105172.10.1016/j.jnnfm.2023.105172CrossRefGoogle Scholar
Lohse, D. & Shishkina, O. 2023 Ultimate turbulent thermal convection. Phys. Today. 76 (11), 2632.10.1063/PT.3.5341CrossRefGoogle Scholar
Lohse, D. & Shishkina, O. 2024 Ultimate Rayleigh–Bénard turbulence. Rev. Mod. Phys. 96 (3), 035001.10.1103/RevModPhys.96.035001CrossRefGoogle Scholar
Lu, J., Fernández, A. & Tryggvason, G. 2005 The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids. 17 (9), 095102.10.1063/1.2033547CrossRefGoogle Scholar
Majji, M.V. & Morris, J.F. 2018 Inertial migration of particles in Taylor–Couette flows. Phys. Fluids. 30 (3), 033303.10.1063/1.5020220CrossRefGoogle Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle–laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11 (1), 529559.10.1146/annurev-conmatphys-031119-050637CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.10.1017/S0022112087000193CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids. 26 (4), 883889.10.1063/1.864230CrossRefGoogle Scholar
Murai, Y., Oiwa, H. & Takeda, Y. 2005 Bubble behavior in a vertical Taylor-Couette flow. J. Phy.: Conf. Ser. 14, 143.Google Scholar
Naumann, Z. & Schiller, L. 1935 A drag coefficient correlation. Z. Ver. Deutsch. Ing. 77 (318), e323.Google Scholar
Ni, R. 2024 Deformation and breakup of bubbles and drops in turbulence. Annu. Rev. Fluid Mech. 56 (1), 319347.10.1146/annurev-fluid-121021-034541CrossRefGoogle Scholar
Ostilla, R., Stevens, R.J., Grossmann, S., Verzicco, R. & Lohse, D. 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.10.1017/jfm.2012.596CrossRefGoogle Scholar
Ostilla-Mónico, R., van der Poel, E.P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids. 26 (1), 015114.10.1063/1.4863312CrossRefGoogle Scholar
Russo, E., Kuerten, J.G., van der Geld, C.W. & Geurts, B.J. 2014 Water droplet condensation and evaporation in turbulent channel flow. J. Fluid Mech. 749, 666700.10.1017/jfm.2014.239CrossRefGoogle Scholar
Sippola, P., Kolehmainen, J., Ozel, A., Liu, X., Saarenrinne, P. & Sundaresan, S. 2018 Experimental and numerical study of wall layer development in a tribocharged fluidized bed. J. Fluid Mech. 849, 860884.10.1017/jfm.2018.412CrossRefGoogle Scholar
Song, J., Shishkina, O. & Zhu, X. 2024 Direct numerical simulations of rapidly rotating Rayleigh–Bénard convection with Rayleigh number up to. J. Fluid Mech. 989, A3.10.1017/jfm.2024.484CrossRefGoogle Scholar
Spandan, V., Lohse, D. & Verzicco, R. 2016 a Deformation and orientation statistics of neutrally buoyant sub-Kolmogorov ellipsoidal droplets in turbulent Taylor–Couette flow. J. Fluid Mech. 809, 480501.10.1017/jfm.2016.694CrossRefGoogle Scholar
Spandan, V., Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2016 b Drag reduction in numerical two-phase Taylor–Couette turbulence using an Euler–Lagrange approach. J. Fluid Mech. 798, 411435.10.1017/jfm.2016.316CrossRefGoogle Scholar
Su, J., Yi, L., Zhao, B., Wang, C., Xu, F., Wang, J. & Sun, C. 2024 Numerical study on the mechanism of drag modulation by dispersed drops in two-phase Taylor–Couette turbulence. J. Fluid Mech. 984, R3.10.1017/jfm.2024.206CrossRefGoogle Scholar
Sugiyama, K., Calzavarini, E. & Lohse, D. 2008 Microbubbly drag reduction in Taylor–Couette flow in the wavy vortex regime. J. Fluid Mech. 608, 2141.10.1017/S0022112008001183CrossRefGoogle Scholar
Taylor, G.I. 1923 Viii. Stability of a viscous liquid contained between two rotating cylinders. Phil. R. Trans. Soc. Lond. Series A . 223 (605-615), 289343.Google Scholar
Tsai, S.-T. 2022 Sedimentation motion of sand particles in moving water (I): The resistance on a small sphere moving in non-uniform flow. Theor. Appl. Mech. Lett. 12 (6), 100392.10.1016/j.taml.2022.100392CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.10.1006/jcph.1996.0033CrossRefGoogle Scholar
Wang, C., Yi, L., Jiang, L. & Sun, C. 2022 a How do the finite-size particles modify the drag in Taylor–Couette turbulent flow. J. Fluid Mech. 937, A15.10.1017/jfm.2022.125CrossRefGoogle Scholar
Wang, C., Yi, L., Jiang, L.-F. & Sun, C. 2022 b How do the finite-size particles modify the drag in Taylor–Couette turbulent flow. J. Fluid Mech. 937, A15.10.1017/jfm.2022.125CrossRefGoogle Scholar
Wang, Z., Xu, C.-X. & Zhao, L. 2021 Turbulence modulations and drag reduction by inertialess spheroids in turbulent channel flow. Phys. Fluids. 33 (12), 123313.10.1063/5.0074857CrossRefGoogle Scholar
Wereley, S.T. & Lueptow, R.M. 1999 Inertial particle motion in a Taylor Couette rotating filter. Phys. Fluids. 11 (2), 325333.10.1063/1.869882CrossRefGoogle Scholar
Zhang, H. & Zhou, Y.-H. 2023 Unveiling the spectrum of electrohydrodynamic turbulence in dust storms. Nat. Commun. 14 (1), 408.10.1038/s41467-023-36041-xCrossRefGoogle ScholarPubMed
Zhang, X., Wang, J. & Wan, D. 2020 Euler–Lagrange study of bubble drag reduction in turbulent channel flow and boundary layer flow. Phys. Fluids. 32 (2), 027101.10.1063/1.5141608CrossRefGoogle Scholar
Zhang, Y.-B., Fan, Y., Su, J., Xi, H.-D. & Sun, C. 2025 Global drag reduction and local flow statistics in Taylor–Couette turbulence with dilute polymer additives. J. Fluid Mech. 1002, A33.10.1017/jfm.2024.1168CrossRefGoogle Scholar
Supplementary material: File

Jiang et al. supplementary material

Jiang et al. supplementary material
Download Jiang et al. supplementary material(File)
File 185.1 KB