Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-29T05:47:39.509Z Has data issue: false hasContentIssue false

Scale interactions and anisotropy in Rayleigh–Taylor turbulence

Published online by Cambridge University Press:  16 November 2021

Dongxiao Zhao
Department of Mechanical Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627, USA UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, PR China
Riccardo Betti
Department of Mechanical Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627, USA Department of Physics, University of Rochester, Rochester, NY 14627, USA
Hussein Aluie*
Department of Mechanical Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627, USA
Email address for correspondence:


We study energy scale transfer in Rayleigh–Taylor (RT) flows by coarse graining in physical space without Fourier transforms, allowing scale analysis along the vertical direction. Two processes are responsible for kinetic energy flux across scales: baropycnal work $\varLambda$, due to large-scale pressure gradients acting on small scales of density and velocity; and deformation work $\varPi$, due to multiscale velocity. Our coarse-graining analysis shows how these fluxes exhibit self-similar evolution that is quadratic-in-time, similar to the RT mixing layer. We find that $\varLambda$ is a conduit for potential energy, transferring energy non-locally from the largest scales to smaller scales in the inertial range where $\varPi$ takes over. In three dimensions, $\varPi$ continues a persistent cascade to smaller scales, whereas in two dimensions $\varPi$ rechannels the energy back to larger scales despite the lack of vorticity conservation in two-dimensional (2-D) variable density flows. This gives rise to a positive feedback loop in 2-D RT (absent in three dimensions) in which mixing layer growth and the associated potential energy release are enhanced relative to 3-D RT, explaining the oft-observed larger $\alpha$ values in 2-D simulations. Despite higher bulk kinetic energy levels in two dimensions, small inertial scales are weaker than in three dimensions. Moreover, the net upscale cascade in two dimensions tends to isotropize the large-scale flow, in stark contrast to three dimensions. Our findings indicate the absence of net upscale energy transfer in three-dimensional RT as is often claimed; growth of large-scale bubbles and spikes is not due to ‘mergers’ but solely due to baropycnal work $\varLambda$.

JFM Papers
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Abarzhi, S.I. 1998 Stable steady flows in Rayleigh–Taylor instability. Phys. Rev. Lett. 81 (2), 337340.CrossRefGoogle Scholar
Abarzhi, S.I. 2010 Review of theoretical modelling approaches of Rayleigh–Taylor instabilities and turbulent mixing. Phil. Trans. R. Soc. Lond. A 368 (1916), 18091828.Google ScholarPubMed
Alexakis, A. & Biferale, L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767, 1101.CrossRefGoogle Scholar
Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74 (4), 534537.CrossRefGoogle ScholarPubMed
Aluie, H. 2011 Compressible turbulence: the cascade and its locality. Phys. Rev. Lett. 106 (17), 174502.CrossRefGoogle ScholarPubMed
Aluie, H. 2013 Scale decomposition in compressible turbulence. Physica D 247 (1), 5465.CrossRefGoogle Scholar
Aluie, H. & Eyink, G.L. 2009 Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter. Phys. Fluids 21 (11), 115108.CrossRefGoogle Scholar
Aluie, H., Hecht, M. & Vallis, G.K. 2018 Mapping the energy cascade in the north atlantic ocean: the coarse-graining approach. J. Phys. Oceanogr. 48, 225244. arXiv:1710.07963.CrossRefGoogle Scholar
Aluie, H., Li, S. & Li, H. 2012 Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett. 751 (2), L29.CrossRefGoogle Scholar
Anderson, K.S., et al. 2020 Effect of cross-beam energy transfer on target-offset asymmetry in direct-drive inertial confinement fusion implosions. Phys. Plasmas 27 (11), 112713.CrossRefGoogle Scholar
Baltzer, J.R. & Livescu, D. 2020 Variable-density effects in incompressible non-buoyant shear-driven turbulent mixing layers. J. Fluid Mech. 900, A16.CrossRefGoogle Scholar
Banerjee, A., Kraft, W.N. & Andrews, M.J. 2010 Detailed measurements of a statistically steady Rayleigh–Taylor mixing layer from small to high Atwood numbers. J. Fluid Mech. 659, 127190.CrossRefGoogle Scholar
Bestehorn, M. 2020 Rayleigh–Taylor and Kelvin–Helmholtz instability studied in the frame of a dimension-reduced model. Phil. Trans. R. Soc. A 378 (2174), 20190508.CrossRefGoogle ScholarPubMed
Betti, R. & Hurricane, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12 (5), 435448.CrossRefGoogle Scholar
Bian, X., Aluie, H., Zhao, D., Zhang, H. & Livescu, D. 2020 Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity. Physica D 403, 132250.CrossRefGoogle Scholar
Birkhoff, G. 1955 Taylor Instability and Laminar Mixing. Tech. Rep. Los Alamos National Laboratory, report LA-1862.Google Scholar
Bodony, D.J. & Lele, S.K. 2005 On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17 (8), 085103.CrossRefGoogle Scholar
Boffetta, G., De Lillo, F., Mazzino, A. & Musacchio, S. 2012 Bolgiano scale in confined Rayleigh–Taylor turbulence. J. Fluid Mech. 690, 426440.CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.CrossRefGoogle Scholar
Boffetta, G. & Mazzino, A. 2017 Incompressible Rayleigh–Taylor turbulence. Annu. Rev. Fluid Mech. 49, 119143.CrossRefGoogle Scholar
Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2009 Kolmogorov scaling and intermittency in Rayleigh–Taylor turbulence. Phys. Rev. E 79 (6), 065301.CrossRefGoogle ScholarPubMed
Brady, P.T. & Livescu, D. 2019 High-order, stable, and conservative boundary schemes for central and compact finite differences. Comput. Fluids 183, 84101.CrossRefGoogle Scholar
Burton, G.C. 2011 Study of ultrahigh Atwood-number Rayleigh–Taylor mixing dynamics using the nonlinear large-eddy simulation method. Phys. Fluids 23 (4), 045106.CrossRefGoogle Scholar
Cabot, W. 2006 Comparison of two-and three-dimensional simulations of miscible Rayleigh–Taylor instability. Phys. Fluids 18 (4), 045101.CrossRefGoogle Scholar
Cabot, W.H. & Cook, A.W. 2006 Reynolds number effects on Rayleigh–Taylor instability with possible implications for type ia supernovae. Nat. Phys. 2 (8), 562568.CrossRefGoogle Scholar
Cabot, W.H., Schilling, O. & Zhou, Y. 2004 Influence of subgrid scales on resolvable turbulence and mixing in Rayleigh–Taylor flow. Phys. Fluids 16 (3), 495508.CrossRefGoogle Scholar
Cabot, W. & Zhou, Y. 2013 Statistical measurements of scaling and anisotropy of turbulent flows induced by Rayleigh–Taylor instability. Phys. Fluids 25 (1), 015107.CrossRefGoogle Scholar
Carpenter, K.R., Mancini, R.C., Harding, E.C., Harvey-Thompson, A.J., Geissel, M., Weis, M.R., Hansen, S.B., Peterson, K.J. & Rochau, G.A. 2020 Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion. Phys. Rev. E 102 (2), 023209.CrossRefGoogle ScholarPubMed
Chassaing, P. 1985 An alternative formulation of the equations of turbulent motion for a fluid of variable density. J. Méc. Théor. Appl. 4, 375389.Google Scholar
Chen, K.-J., Woosley, S.E. & Whalen, D.J. 2020 Gas dynamics of the nickel-56 decay heating in pair-instability supernovae. Astrophys. J. 897 (2), 152.CrossRefGoogle Scholar
Cheng, B., Glimm, J. & Sharp, D.H. 2002 A three-dimensional renormalization group bubble merger model for Rayleigh–Taylor mixing. Chaos 12 (2), 267274.CrossRefGoogle ScholarPubMed
Chertkov, M. 2003 Phenomenology of Rayleigh–Taylor turbulence. Phys. Rev. Lett. 91 (11), 115001.CrossRefGoogle ScholarPubMed
Clark, D.S., et al. 2016 Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility. Phys. Plasmas 23 (5), 056302.CrossRefGoogle Scholar
Cook, A.W. & Dimotakis, P.E. 2001 Transition stages of Rayleigh–Taylor instability between miscible fluids. J. Fluid Mech. 443, 6999.CrossRefGoogle Scholar
Cook, A.W. & Zhou, Y. 2002 Energy transfer in Rayleigh–Taylor instability. Phys. Rev. E 66 (2), 026312.CrossRefGoogle ScholarPubMed
Dimonte, G. 2004 Dependence of turbulent Rayleigh–Taylor instability on initial perturbations. Phys. Rev. E 69 (5), 056305.CrossRefGoogle ScholarPubMed
Dimonte, G., et al. 2004 A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the alpha-group collaboration. Phys. Fluids 16 (5), 16681693.CrossRefGoogle Scholar
Dimonte, G., Ramaprabhu, P., Youngs, D.L., Andrews, M.J. & Rosner, R. 2005 Recent advances in the turbulent Rayleigh–Taylor instability a. Phys. Plasmas 12 (5), 056301.CrossRefGoogle Scholar
Douglas, M.R., Deeney, C. & Roderick, N.F. 1998 Computational investigation of single mode vs multimode Rayleigh–Taylor seeding in Z-pinch implosions. Phys. Plasmas 5 (1), 41834198.CrossRefGoogle Scholar
Eyink, G.L. 1995 Exact results on scaling exponents in the 2D enstrophy cascade. Phys. Rev. Lett. 74 (1), 38003803.CrossRefGoogle ScholarPubMed
Eyink, G.L. 2005 Locality of turbulent cascades. Physica D 207 (1), 91116.CrossRefGoogle Scholar
Eyink, G.L. 2006 Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159190.CrossRefGoogle Scholar
Eyink, G.L. & Aluie, H. 2009 Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids 21 (11), 115107.CrossRefGoogle Scholar
Eyink, G.L. & Drivas, T.D. 2018 Cascades and dissipative anomalies in compressible fluid turbulence. Phys. Rev. X 8 (1), 011022.Google Scholar
Fang, L. & Ouellette, N.T. 2016 Advection and the efficiency of spectral energy transfer in two-dimensional turbulence. Phys. Rev. Lett. 117 (10), 104501.CrossRefGoogle ScholarPubMed
Favre, A.J., Gaviglio, J.J. & Dumas, R.J. 1958 Further space-time correlations of velocity in a turbulent boundary layer. J. Fluid Mech. 3 (4), 344356.CrossRefGoogle Scholar
Gerashchenko, S. & Livescu, D. 2016 Viscous effects on the Rayleigh–Taylor instability with background temperature gradient. Phys. Plasmas 23 (7), 072121.CrossRefGoogle Scholar
Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Mech. 238, 325336.CrossRefGoogle Scholar
Glimm, J. & Li, X.L. 1988 Validation of the sharp–wheeler bubble merger model from experimental and computational data. Phys. Fluids 31 (8), 20772085.CrossRefGoogle Scholar
Glimm, J., Sharp, D.H., Kaman, T. & Lim, H. 2013 New directions for Rayleigh–Taylor mixing. Phil. Trans. R. Soc. A 371, 20120183.CrossRefGoogle ScholarPubMed
Goncharov, V.N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88 (13), 134502.CrossRefGoogle ScholarPubMed
Hillebrandt, W. & Niemeyer, J.C. 2000 Type ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38 (1), 191230.CrossRefGoogle Scholar
Hopkins, L.B., et al. 2018 Toward a burning plasma state using diamond ablator inertially confined fusion (icf) implosions on the national ignition facility (nif). Plasma Phys. Control. Fusion 61 (1), 014023.CrossRefGoogle Scholar
Horne, J.T. & Lawrie, A.G.W. 2020 Aspect-ratio-constrained Rayleigh–Taylor instability. Physica D 406, 132442.CrossRefGoogle Scholar
Joggerst, C.C., Almgren, A. & Woosley, S.E. 2010 Three-dimensional simulations of Rayleigh–Taylor mixing in core-collapse supernovae. Astrophys. J. 723 (1), 353363.CrossRefGoogle Scholar
John, V. 2012 Large Eddy Simulation of Turbulent Incompressible Flows: Analytical and Numerical Results for a Class of LES Models, vol. 34. Springer Science & Business Media.Google Scholar
Just, O., Bollig, R., Janka, H.-T., Obergaulinger, M., Glas, R. & Nagataki, S. 2018 Core-collapse supernova simulations in one and two dimensions: comparison of codes and approximations. Mon. Not. R. Astron. Soc. 481 (4), 47864814.CrossRefGoogle Scholar
Karimi, M. & Girimaji, S.S. 2017 Influence of orientation on the evolution of small perturbations in compressible shear layers with inflection points. Phys. Rev. E 95 (3), 033112.CrossRefGoogle ScholarPubMed
Kida, S. & Orszag, S.A. 1990 Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5 (2), 85125.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301305.Google Scholar
Kotake, K., Takiwaki, T., Fischer, T., Nakamura, K. & Martínez-Pinedo, G. 2018 Impact of neutrino opacities on core-collapse supernova simulations. Astrophys. J. 853 (2), 170.CrossRefGoogle Scholar
Kraichnan, R.H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.CrossRefGoogle Scholar
Kritsuk, A.G., Wagner, R. & Norman, M.L. 2013 Energy cascade and scaling in supersonic isothermal turbulence. J. Fluid Mech. 729, R1.CrossRefGoogle Scholar
Kull, H.-J. 1991 Theory of the Rayleigh–Taylor instability. Phys. Rep. 206 (5), 197325.CrossRefGoogle Scholar
Lawrie, A.G.W. & Dalziel, S.B. 2011 Rayleigh–Taylor mixing in an otherwise stable stratification. J. Fluid Mech. 688, 507527.CrossRefGoogle Scholar
Layzer, D. 1955 On the instability of superposed fluids in a gravitational field. Astrophys. J. 122, 1.CrossRefGoogle Scholar
Lees, A. & Aluie, H. 2019 Baropycnal work: a mechanism for energy transfer across scales. Fluids 4 (2), 92.CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Leonard, A. 1975 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237248.CrossRefGoogle Scholar
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, N31.CrossRefGoogle Scholar
Livescu, D. 2004 Compressibility effects on the Rayleigh–Taylor instability growth between immiscible fluids. Phys. Fluids 16 (1), 118127.CrossRefGoogle Scholar
Livescu, D. 2013 Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh–Taylor instability. Phil. Trans. R. Soc. A 371, 20120185.CrossRefGoogle Scholar
Livescu, D. 2020 Turbulence with large thermal and compositional density variations. Annu. Rev. Fluid Mech. 52, 309341.CrossRefGoogle Scholar
Livescu, D. & Ristorcelli, J.R. 2007 Buoyancy-driven variable-density turbulence. J. Fluid Mech. 591, 4371.CrossRefGoogle Scholar
Livescu, D. & Ristorcelli, J.R. 2008 Variable-density mixing in buoyancy-driven turbulence. J. Fluid Mech. 605, 145180.CrossRefGoogle Scholar
Livescu, D., Ristorcelli, J.R., Gore, R.A., Dean, S.H., Cabot, W.H. & Cook, A.W. 2009 High-Reynolds number Rayleigh–Taylor turbulence. J. Turbul. 10, N13.CrossRefGoogle Scholar
Livescu, D., Ristorcelli, J.R., Petersen, M.R. & Gore, R.A. 2010 New phenomena in variable-density Rayleigh–Taylor turbulence. Phys. Scr. 2010 (T142), 014015.CrossRefGoogle Scholar
Meaney, K.D., et al. 2020 Carbon ablator areal density at fusion burn: observations and trends at the national ignition facility. Phys. Plasmas 27 (5), 052702.CrossRefGoogle Scholar
Meneveau, C. 1994 Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental tests. Phys. Fluids 6 (2), 815833.CrossRefGoogle Scholar
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Ann. Rev. Fluid Mech. 32, 132.CrossRefGoogle Scholar
Ofer, D., Alon, U., Shvarts, D., Mccrory, R.L. & Verdon, C.P. 1996 Modal model for the nonlinear multimode Rayleigh–Taylor instability. Phys. Plasmas 3 (8), 30733090.CrossRefGoogle Scholar
Olson, D.H. & Jacobs, J.W. 2009 Experimental study of Rayleigh–Taylor instability with a complex initial perturbation. Phys. Fluids 21 (3), 034103.CrossRefGoogle Scholar
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. & Shvarts, D. 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8 (6), 28832889.CrossRefGoogle Scholar
Patterson, G.S. & Orszag, S.A. 1971 Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions. Phys. Fluids 14 (11), 25382541.CrossRefGoogle Scholar
Piomelli, U., Cabot, W.H., Moin, P. & Lee, S. 1991 Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A: Fluid Dyn. 3 (7), 17661771.CrossRefGoogle Scholar
Pope, S.B. 2001 Turbulent Flows. IOP Publishing.Google Scholar
Porth, O., Komissarov, S.S. & Keppens, R. 2014 Rayleigh–Taylor instability in magnetohydrodynamic simulations of the Crab nebula. Mon. Not. R. Astron. Soc. 443 (1), 547558.CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G. & Andrews, M.J. 2005 A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 536, 285319.CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G., Woodward, P., Fryer, C., Rockefeller, G., Muthuraman, K., Lin, P.-H. & Jayaraj, J. 2012 The late-time dynamics of the single-mode Rayleigh–Taylor instability. Phys. Fluids 24 (7), 074107.CrossRefGoogle Scholar
Rayleigh, Lord 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. s1-14 (1), 170177.Google Scholar
Reckinger, S.J., Livescu, D. & Vasilyev, O.V. 2016 Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh–Taylor instability. J. Comput. Phys. 313, 181208.CrossRefGoogle Scholar
Ristorcelli, J.R. & Clark, T.T. 2004 Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213253.CrossRefGoogle Scholar
Rivera, M.K., Aluie, H. & Ecke, R.E. 2014 The direct enstrophy cascade of two-dimensional soap film flows. Phys. Fluids 26 (5), 055105.CrossRefGoogle Scholar
Sadek, M. & Aluie, H. 2018 Extracting the spectrum of a flow by spatial filtering. Phys. Rev. Fluids 3 (12), 124610.CrossRefGoogle Scholar
Saenz, J.A., Aslangil, D. & Livescu, D. 2021 Filtering, averaging, and scale dependency in homogeneous variable density turbulence. Phys. Fluids 33 (2), 025115.CrossRefGoogle Scholar
Sandoval, D.L. 1995 The dynamics of variable-density turbulence. PhD thesis, University of Washington.CrossRefGoogle Scholar
Schilling, O. & Mueschke, N.J. 2010 Analysis of turbulent transport and mixing in transitional Rayleigh–Taylor unstable flow using direct numerical simulation data. Phys. Fluids 22 (10), 105102.CrossRefGoogle Scholar
Sharp, D.H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12 (1–3), 3IN11110IN1018.CrossRefGoogle Scholar
Shvarts, D., Alon, U., Ofer, D., Mccrory, R.L. & Verdon, C.P. 1995 Nonlinear evolution of multimode Rayleigh–Taylor instability in two and three dimensions. Phys. Plasmas 2 (6), 24652472.CrossRefGoogle Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192196.Google Scholar
Wang, J., Wan, M, Chen, S. & Chen, S. 2018 Kinetic energy transfer in compressible isotropic turbulence. J. Fluid Mech. 841, 581613.CrossRefGoogle Scholar
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X.T. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110 (21), 214505.CrossRefGoogle ScholarPubMed
Weber, C.R., et al. 2020 Mixing in icf implosions on the national ignition facility caused by the fill-tube. Phys. Plasmas 27 (3), 032703.CrossRefGoogle Scholar
Weber, C.R., Clark, D.S., Cook, A.W., Busby, L.E. & Robey, H.F. 2014 Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation. Phys. Rev. E 89 (5), 362.CrossRefGoogle ScholarPubMed
Wei, Y., Dou, H.-S., Qian, Y. & Wang, Z. 2017 A novel two-dimensional coupled lattice Boltzmann model for incompressible flow in application of turbulence Rayleigh–Taylor instability. Comput. Fluids 156, 97102.CrossRefGoogle Scholar
Wei, T. & Livescu, D. 2012 Late-time quadratic growth in single-mode Rayleigh–Taylor instability. Phys. Rev. E 86 (4), 046405.CrossRefGoogle ScholarPubMed
Wieland, S.A., Hamlington, P.E., Reckinger, S.J. & Livescu, D. 2019 Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh–Taylor instability. Phys. Rev. Fluids 4 (9), 093905.CrossRefGoogle Scholar
Wieland, S., Reckinger, S., Hamlington, P.E. & Livescu, D. 2017 Effects of background stratification on the compressible Rayleigh Taylor instability. In 47th AIAA Fluid Dynamics Conference, AIAA Paper 2017-3974.Google Scholar
Youngs, D.L. 1991 Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Phys. Fluids A: Fluid Dyn. 3 (5), 13121320.CrossRefGoogle Scholar
Youngs, D.L. 1994 Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Laser Part. Beams 12 (4), 725750.CrossRefGoogle Scholar
Zhang, H., Betti, R., Gopalaswamy, V., Yan, R. & Aluie, H. 2018 a Nonlinear excitation of the ablative Rayleigh–Taylor instability for all wave numbers. Phys. Rev. E 97 (1), 011203.CrossRefGoogle ScholarPubMed
Zhang, H., Betti, R., Yan, R., Zhao, D., Shvarts, D. & Aluie, H. 2018 b Self-similar multimode bubble-front evolution of the ablative Rayleigh–Taylor instability in two and three dimensions. Phys. Rev. Lett. 121 (18), 185002.CrossRefGoogle ScholarPubMed
Zhang, J., Wang, L.F., Ye, W.H., Wu, J.F., Guo, H.Y., Ding, Y.K., Zhang, W.Y. & He, X.T. 2018 c Weakly nonlinear multi-mode Rayleigh–Taylor instability in two-dimensional spherical geometry. Phys. Plasmas 25 (8), 082713.Google Scholar
Zhao, D. & Aluie, H. 2018 Inviscid criterion for decomposing scales. Phys. Rev. Fluids 3 (5), 054603.CrossRefGoogle Scholar
Zhou, Y. 2001 A scaling analysis of turbulent flows driven by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Fluids 13 (2), 538543.CrossRefGoogle Scholar
Zhou, Y., et al. 2003 Progress in understanding turbulent mixing induced by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Plasmas 10 (5), 18831896.CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723, 1160.Google Scholar
Zhou, Y. 2021 Turbulence theories and statistical closure approaches. Phys. Rep. 935, 1117.CrossRefGoogle Scholar
Zhou, Y. & Cabot, W.H. 2019 Time-dependent study of anisotropy in Rayleigh–Taylor instability induced turbulent flows with a variety of density ratios. Phys. Fluids 31 (8), 084106.CrossRefGoogle Scholar
Zhou, Q., Huang, Y.-X., Lu, Z.-M., Liu, Y.-L. & Ni, R. 2016 Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh–Taylor turbulence. J. Fluid Mech. 786, 294308.CrossRefGoogle Scholar
Supplementary material: File

Zhao et al. supplementary material

Zhao et al. supplementary material

Download Zhao et al. supplementary material(File)
File 1.5 MB