Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-9hjnw Total loading time: 0.368 Render date: 2022-07-05T13:34:02.841Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer

Published online by Cambridge University Press:  25 July 2000

FERNANDO PORTÉ-AGEL
Affiliation:
Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Center for Environmental and Applied Fluid Mechanics, The Johns Hopkins University, Baltimore, MD 21218, USA
CHARLES MENEVEAU
Affiliation:
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Center for Environmental and Applied Fluid Mechanics, The Johns Hopkins University, Baltimore, MD 21218, USA
MARC B. PARLANGE
Affiliation:
Department of Geography and Environmental Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Center for Environmental and Applied Fluid Mechanics, The Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

A scale-dependent dynamic subgrid-scale model for large-eddy simulation of turbulent flows is proposed. Unlike the traditional dynamic model, it does not rely on the assumption that the model coefficient is scale invariant. The model is based on a second test-filtering operation which allows us to determine from the simulation how the coefficient varies with scale. The scale-dependent model is tested in simulations of a neutral atmospheric boundary layer. In this application, near the ground the grid scale is by necessity comparable to the local integral scale (of the order of the distance to the wall). With the grid scale and/or the test-filter scale being outside the inertial range, scale invariance is broken. The results are compared with those from (a) the traditional Smagorinsky model that requires specification of the coefficient and of a wall damping function, and (b) the standard dynamic model that assumes scale invariance of the coefficient. In the near-surface region the traditional Smagorinsky and standard dynamic models are too dissipative and not dissipative enough, respectively. Simulations with the scale-dependent dynamic model yield the expected trends of the coefficient as a function of scale and give improved predictions of velocity spectra at different heights from the ground. Consistent with the improved dissipation characteristics, the scale-dependent model also yields improved mean velocity profiles.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
420
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *