Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-18T08:30:37.904Z Has data issue: false hasContentIssue false

Scaling the circulation shed by a pitching panel

Published online by Cambridge University Press:  31 October 2011

James H. J. Buchholz*
Affiliation:
Department of Mechanical and Industrial Engineering / IIHR – Hydroscience & Engineering, University of Iowa, Iowa City, IA 52242, USA
Melissa A. Green
Affiliation:
Laboratories for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375, USA
Alexander J. Smits
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: james-h-buchholz@uiowa.edu

Abstract

A new scaling parameter is developed for the circulation shed by a rigid, rectangular panel pitching periodically about its leading edge. This parameter is the product of a kinematic and a geometric component. The kinematic component describes the relationship between the mean vorticity flux from the panel surface and the panel motion. The geometric component depends on the ratio of pitching amplitude to the span of the panel. The kinematic component is developed based on the connection between the surface pressure distribution and the resulting surface vorticity flux, which are supported in a stroke-averaged sense by pressure measurements on the surface of the panel. The parameter gives a robust scaling for the total spanwise circulation shed in a half-cycle by the panel. It provides a useful predictive tool, in that it can be either complementary to the formation number or provide an alternative scaling parameter when vortex saturation and pinch-off do not occur.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
2. Borazjani, I. & Sotiropoulos, F. 2010 On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J. Expl Biol. 213, 89107.CrossRefGoogle ScholarPubMed
3. Buchholz, J. H. J. & Smits, A. J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.CrossRefGoogle Scholar
4. Buchholz, J. H. J. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.CrossRefGoogle ScholarPubMed
5. Chen, K. K., Colonius, T. & Taira, K. 2010 The leading-edge vortex and quasisteady vortex shedding on an accelerating plate. Phys. Fluids 22, 033601.CrossRefGoogle Scholar
6. Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.CrossRefGoogle Scholar
7. Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
8. Gharib, M., Rambod, E. & Shariff, K 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
9. Green, M. A. & Smits, A. J. 2008 Effects of three-dimensionality on thrust production by a pitching panel. J. Fluid Mech. 531, 211220.CrossRefGoogle Scholar
10. Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating aerofoil. AIAA J. 27 (9), 12001205.CrossRefGoogle Scholar
11. Lighthill, M. J. 1963 Introduction boundary layer theory. In Laminar Boundary Layers (ed. Rosenhead, L. ), pp. 46113. Oxford University Press.Google Scholar
12. Milano, M. & Gharib, M. 2005 Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403409.CrossRefGoogle Scholar
13. Ringuette, M. J., Milano, M. & Gharib, M. 2007 Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453468.CrossRefGoogle Scholar
14. Rival, D., Prangemeier, T. & Tropea, C. 2009 The influence of aerofoil kinematics on the formation of leading-edge vortices in bio-inspired flight. Exp. Fluids 46, 823833.CrossRefGoogle Scholar
15. Taira, K. & Colonius, T. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.CrossRefGoogle Scholar
16. Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. NACA. Report 496.Google Scholar
17. Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P. 2000 Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech. 32, 3353.CrossRefGoogle Scholar
18. Wu, J. Z. & Wu, J. M. 1993 Interactions between a solid surface and a viscous compressible flow field. J. Fluid Mech. 254, 183211.CrossRefGoogle Scholar
19. Wu, J. Z. & Wu, J. M. 1996 Vorticity dynamics on boundaries. In Advances in Applied Mechanics (ed. Hutchison, J. W. & Wu, T. Y. ), vol. 32. pp. 119275. Academic.Google Scholar
20. Young, J. & Lai, J. C. S. 2007 Vortex lock-in phenomenon in the wake of a plunging aerofoil. AIAA J. 45 (2), 485490.CrossRefGoogle Scholar