Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-21T14:35:27.044Z Has data issue: false hasContentIssue false

Short-term dynamics of a density interface following an impact

Published online by Cambridge University Press:  19 April 2007

A. ANTKOWIAK
Affiliation:
IRPHÉ, Aix–Marseille Université, CNRS, Technopôle de Château-Gombert 49, rue Frédéric Joliot-Curie 13384 Marseille Cedex 13, France
N. BREMOND
Affiliation:
IRPHÉ, Aix–Marseille Université, CNRS, Technopôle de Château-Gombert 49, rue Frédéric Joliot-Curie 13384 Marseille Cedex 13, France
S. LE DIZÈS
Affiliation:
IRPHÉ, Aix–Marseille Université, CNRS, Technopôle de Château-Gombert 49, rue Frédéric Joliot-Curie 13384 Marseille Cedex 13, France
E. VILLERMAUX
Affiliation:
IRPHÉ, Aix–Marseille Université, CNRS, Technopôle de Château-Gombert 49, rue Frédéric Joliot-Curie 13384 Marseille Cedex 13, France Also at: Institut Universitaire de France.

Abstract

A tube filled with a perfectly wetting liquid falls axially under its own weight. In its gravity-free reference frame, the liquid interface is deformed by surface tension into a hemispherical shape. On impact of the tube on a rigid floor, the interface curvature reverses violently, forming a concentrated jet. If the contact angle at the tube wall is such that the interface is flat, the liquid rebounds as a whole with the tube, with no deformation. We analyse this phenomenon using an impulse pressure description, providing an exact description of the initial liquid velocity field at the impact, supported by high-speed image velocimetry measurements. This initial dynamics is insensitive to liquid surface tension and viscosity.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Benjamin, T. B. & Ellis, A. T. 1966 A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion. Phil. Trans. R. Soc. Lond. A 260, 221240.Google Scholar
Birkhoff, G., MacDougall, D. P., Pugh, E. M. & Taylor, G. I. 1948 Explosives with lined cavities. J. Appl. Phys. 19, 563582.CrossRefGoogle Scholar
Blanchard, D. C. 1967 From Raindrops to Volcanoes. Doubleday, re-edited by Dover in 2004.Google Scholar
Cooker, M. J. & Peregrine, D. H. 1995 Pressure-impulse theory for liquid impact problems. J. Fluid Mech. 297, 193214.CrossRefGoogle Scholar
Knight, R. C. 1936 The potential of a sphere inside an infinite circular cylinder. Q. J. Maths. Oxford series 7, 124133.CrossRefGoogle Scholar
Lavrentiev, M. & Chabat, B. 1980 Effets Hydrodynamiques et Modèles Mathématiques. Éditions MIR, translated from the 1977 Russian edition.Google Scholar
Longuet-Higgins, M. S. 1983 Bubbles, breaking waves and hyperbolic jets at a free surface. J. Fluid Mech. 127, 103121.CrossRefGoogle Scholar
Meunier, P. & Leweke, T. 2003 Analysis and treatments of errors due to high velocity gradients in particle image velocimetry. Exps. Fluids 35, 408421.CrossRefGoogle Scholar
Thoroddsen, S. T. & Shen, A. Q. 2001 Granular jets. Phys. Fluids 13, 46.CrossRefGoogle Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.CrossRefGoogle Scholar