Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-bjz6k Total loading time: 0.265 Render date: 2022-05-29T13:18:58.819Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Simulation study of particle clouds in oscillating shear flow

Published online by Cambridge University Press:  07 August 2018

Amanda A. Howard
Affiliation:
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
Martin R. Maxey*
Affiliation:
Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
*
Email address for correspondence: Martin_Maxey@Brown.edu

Abstract

Simulations of cylindrical clouds of concentrated, neutrally buoyant, suspended particles are used to investigate the dispersion of the particles in an oscillating Couette flow. In experiments by Metzger & Butler (Phys. Fluids, vol. 24 (2), 2012, 021703) with spherical clouds of non-Brownian particles, the clouds are shown to elongate at volume fraction $\unicode[STIX]{x1D719}=0.4$ but form ‘galaxies’ where the cloud rotates as a single body with extended arms when $\unicode[STIX]{x1D719}>0.4$ and the ratio of the cloud radius to particle radius, $R/a$, is sufficiently large. The simulations, which use the force coupling method, are completed for $\unicode[STIX]{x1D719}=0.4$ and $\unicode[STIX]{x1D719}=0.55$, with $R/a$ between $5$ and $20$. The cloud shape for $\unicode[STIX]{x1D719}=0.4$ is shown to be reversible at low strain amplitude, and extend in the streamwise direction along the centre of the cloud at moderate strain amplitude. For higher strain amplitude the clouds extend near the channel walls to form a parallelogram. The results demonstrate that the particle contact force determines the transition between these states and plays a large role in the irreversibility of the parallelograms. Rotating galaxies form at $\unicode[STIX]{x1D719}=0.55$ with $R/a\geqslant 15$, and are characterized by a particle-induced flow in the wall-normal direction.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (03), 545570.CrossRefGoogle Scholar
Blanc, F., Peters, F. & Lemaire, E. 2011 Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Phys. Rev. Lett. 107 (20), 208302.CrossRefGoogle ScholarPubMed
Corté, L., Chaikin, P. M., Gollub, J. P. & Pine, D. J. 2008 Random organization in periodically driven systems. Nat. Phys. 4 (5), 420424.CrossRefGoogle Scholar
Cui, F. R., Howard, A. A., Maxey, M. R. & Tripathi, A. 2017 Dispersion of a suspension plug in oscillatory pressure-driven flow. Phys. Rev. Fluids 2 (9), 094303.CrossRefGoogle Scholar
Da Cunha, F. R. & Hinch, E. J. 1996 Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309, 211223.CrossRefGoogle Scholar
Drew, D. A. 1983 Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261291.CrossRefGoogle Scholar
Durlofsky, L. & Brady, J. F. 1987 Analysis of the brinkman equation as a model for flow in porous media. Phys. Fluids 30 (11), 33293341.CrossRefGoogle Scholar
Gallier, S., Lemaire, E., Peters, F. & Lobry, L. 2014 Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech. 757, 514549.CrossRefGoogle Scholar
Metzger, B. & Butler, J. E. 2010 Irreversibility and chaos: Role of long-range hydrodynamic interactions in sheared suspensions. Phys. Rev. E 82 (5), 51406.Google ScholarPubMed
Metzger, B. & Butler, J. E. 2012 Clouds of particles in a periodic shear flow. Phys. Fluids 24 (2), 021703.CrossRefGoogle Scholar
Metzger, B., Pham, P. & Butler, J. E. 2013 Irreversibility and chaos: Role of lubrication interactions in sheared suspensions. Phys. Rev. E 87 (5), 052304.Google ScholarPubMed
Pednekar, S., Chun, J. & Morris, J. 2018 Bidisperse and polydisperse suspension rheology at large solid fraction. J. Rheol. 62 (2), 513526.CrossRefGoogle Scholar
Peters, F., Ghigliotti, G., Gallier, S., Blanc, F., Lemaire, E. & Lobry, L. 2016 Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: a numerical study. J. Rheol. 60 (4), 715732.CrossRefGoogle Scholar
Pham, P., Butler, J. E. & Metzger, B. 2016 Origin of critical strain amplitude in periodically sheared suspensions. Phys. Rev. Fluids 1 (2), 022201.CrossRefGoogle Scholar
Pham, P., Metzger, B. & Butler, J. E. 2015 Particle dispersion in sheared suspensions: crucial role of solid-solid contacts. Phys. Fluids 27 (5), 051701.CrossRefGoogle Scholar
Pine, D. J., Gollub, J. P., Brady, J. F. & Leshanksy, A. M. 2005 Chaos and threshold for irreversibility in sheared suspensions. Nature 438, 9971000.CrossRefGoogle ScholarPubMed
Rampall, I., Smart, J. R. & Leighton, D. T. 1997 The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow. J. Fluid Mech. 339, 124.CrossRefGoogle Scholar
Singh, A., Mari, R., Denn, M. M. & Morris, J. F. 2018 A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62 (2), 457468.CrossRefGoogle Scholar
Townsend, A. K. & Wilson, H. J. 2017 Frictional shear thickening in suspensions: The effect of rigid asperities. Phys. Fluids 29 (12), 121607.CrossRefGoogle Scholar
Yeo, K. & Maxey, M. R. 2011 Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow. J. Fluid Mech. 682, 491518.CrossRefGoogle Scholar
Zarraga, I. E. & Leighton, D. T. 2002 Measurement of an unexpectedly large shear-induced self-diffusivity in a dilute suspension of spheres. Phys. Fluids 14 (7), 21942201.CrossRefGoogle Scholar

Howard et. al. supplementary movie

Particle locations over two periods plotted with the averaged wall-normal velocity 〈v〉 for R/a = 20 and H/a = 80.

Download Howard et. al. supplementary movie(Video)
Video 4 MB
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Simulation study of particle clouds in oscillating shear flow
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Simulation study of particle clouds in oscillating shear flow
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Simulation study of particle clouds in oscillating shear flow
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *