Hostname: page-component-797576ffbb-jhnrh Total loading time: 0 Render date: 2023-12-01T22:54:38.740Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Spectral eddy viscosity of stratified turbulence

Published online by Cambridge University Press:  18 August 2014

Sebastian Remmler*
Affiliation:
Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, 85747 Garching bei München, Germany
Stefan Hickel
Affiliation:
Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, 85747 Garching bei München, Germany
*
Email address for correspondence: remmler@tum.de

Abstract

The spectral eddy viscosity (SEV) concept is a handy tool for the derivation of large-eddy simulation (LES) turbulence models and for the evaluation of their performance in predicting the spectral energy transfer. We compute this quantity by filtering and truncating fully resolved turbulence data from direct numerical simulations (DNS) of neutrally and stably stratified homogeneous turbulence. The results qualitatively confirm the plateau–cusp shape, which is often assumed to be universal, but show a strong dependence on the test filter size. Increasing stable stratification not only breaks the isotropy of the SEV but also modifies its basic shape, which poses a great challenge for implicit and explicit LES methods. We find indications that for stably stratified turbulence it is necessary to use different subgrid-scale (SGS) models for the horizontal and vertical velocity components. Our data disprove models that assume a constant positive effective turbulent Prandtl number.

Type
Rapids
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aspden, A. J., Nikiforakis, N., Dalziel, S. B. & Bell, J. B. 2008 Analysis of implicit LES methods. Commun. Appl. Math. Comput. Sci. 3 (1), 103126.Google Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.Google Scholar
Chollet, J.-P.1984 Two-point closures as a subgrid scale modeling for large eddy simulations. In 4th Symposium on Turbulent Shear Flows (ed. H. Viets, R. J. Bethke & D. Bougine), p. 9.Google Scholar
Domaradzki, J. A., Metcalfe, R. W., Rogallo, R. S. & Riley, J. J. 1987 Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations. Phys. Rev. Lett. 58 (6), 547550.Google Scholar
Dougherty, J. P. 1961 The anisotropy of turbulence at the meteor level. J. Atmos. Sol.-Terr. Phys. 21, 210213.Google Scholar
Galperin, B. & Sukoriansky, S. 2010 Geophysical flows with anisotropic turbulence and dispersive waves: flows with stable stratification. Ocean Dyn. 60, 13191337.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.Google Scholar
Godeferd, F. S. & Cambon, C. 1994 Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids 6 (6), 20842100.Google Scholar
Godeferd, F. S. & Staquet, C. 2003 Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy. J. Fluid Mech. 486, 115159.Google Scholar
Heisenberg, W. 1948 Zur statistischen Theorie der Turbulenz. Z. Phys. A 124, 628657.Google Scholar
Hickel, S., Adams, N. A. & Domaradzki, J. A. 2006 An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213, 413436.Google Scholar
Hickel, S., Adams, N. A. & Mansour, N. N. 2007 Implicit subgrid-scale modeling for large-eddy simulation of passive scalar mixing. Phys. Fluids 19, 095102.Google Scholar
Khani, S. & Waite, M. L. 2013 Effective eddy viscosity in stratified turbulence. J. Turbul. 14 (7), 4970.Google Scholar
Kitsios, V., Frederiksen, J. S. & Zidikheri, M. J. 2012 Subgrid model with scaling laws for atmospheric simulations. J. Atmos. Sci. 69 (4), 14271445.Google Scholar
Kitsios, V., Frederiksen, J. S. & Zidikheri, M. J. 2013 Scaling laws for parameterisations of subgrid eddy–eddy interactions in simulations of oceanic circulations. Ocean Model. 68, 88105.Google Scholar
Kraichnan, R. H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 15211536.Google Scholar
Lilly, D. K. 1992 A proposed modification of the German subgrid-scale closure method. Phys. Fluids A 4 (3), 633635.Google Scholar
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41 (02), 363386.Google Scholar
Ozmidov, R. V. 1965 On the turbulent exchange in a stably stratified ocean. Izv., Atmos. Ocean. Phys. 1, 493497.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Remmler, S. & Hickel, S. 2012 Direct and large eddy simulation of stratified turbulence. Intl J. Heat Fluid Flow 35, 1324.Google Scholar
Remmler, S. & Hickel, S. 2013 Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation. Theor. Comput. Fluid Dyn. 27, 319336.Google Scholar
Shu, C.-W. 1988 Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9 (6), 10731084.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I: The basic experiment. Mon. Weath. Rev. 91, 99164.Google Scholar
Staquet, C. & Godeferd, F. S. 1998 Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 1. Flow energetics. J. Fluid Mech. 360, 295340.Google Scholar
Sukoriansky, S., Galperin, B. & Staroselsky, I. 2005 A quasinormal scale elimination model of turbulent flows with stable stratification. Phys. Fluids 17 (8), 085107.Google Scholar