Hostname: page-component-7d684dbfc8-7nm9g Total loading time: 0 Render date: 2023-10-01T14:59:57.024Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Spreading dynamics of drop impacts

Published online by Cambridge University Press:  01 October 2012

Guillaume Lagubeau
LAUM, UMR CNRS 6613, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France
Marco A. Fontelos
Instituto de Ciencias Matemáticas, (ICMAT, CSIC-UAM-UC3M-UCM), C/ Serrano 123, 28006 Madrid, Spain
Christophe Josserand*
Institut D’Alembert, CNRS & UPMC (Université Paris 06), UMR 7190, case 162, 4 place Jussieu, 75005 Paris, France
Agnès Maurel
Institut Langevin, LOA, UMR CNRS 7587, ESPCI, 10 rue Vauquelin, 75005 Paris, France
Vincent Pagneux
LAUM, UMR CNRS 6613, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France
Philippe Petitjeans
PMMH, UMR CNRS 7636, ESPCI, 10 rue Vauquelin, 75005 Paris, France
Email address for correspondence:


We present an experimental study of drop impact on a solid surface in the spreading regime with no splashing. Using the space–time-resolved Fourier transform profilometry technique, we can follow the evolution of the drop shape during the impact. We show that a self-similar dynamical regime drives the drop spreading until the growth of a viscous boundary layer from the substrate selects a residual minimal film thickness. Finally, we discuss the interplay between capillary and viscous effects in the spreading dynamics, which suggests a pertinent impact parameter.

©2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Antkowiak, A., Audoly, B., Josserand, C., Neukirch, S. & Rivetti, M. 2011 Instant fabrication and selection of folded structures using drop impact. Proc. Natl Acad. Sci. USA 108, 1040010404.CrossRefGoogle ScholarPubMed
Bartolo, D., Josserand, C. & Bonn, D. 2005 Retraction dynamics of aqueous drops upon impact on nonwetting surfaces. J. Fluid Mech. 545, 329338.CrossRefGoogle Scholar
Bartolo, D., Josserand, C. & Bonn, D. 2006 Singular jets and bubbles in drop impact. Phys. Rev. Lett. 96, 124501.CrossRefGoogle ScholarPubMed
Biance, A., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554 (1), 4766.CrossRefGoogle Scholar
Chekroun, M., Maurel, A., Lagubeau, G., Pagneux, V., Cobelli, P., Przadka, A. & Petitjeans, P. 2012 Space–time resolved experiments for water waves. Acta Polonica 120 (61), 142148.CrossRefGoogle Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Cobelli, P., Maurel, A., Pagneux, V. & Petitjeans, P. 2009 Global measurement of water waves by Fourier transform profilometry. Exp. Fluids 46 (6), 10371047.CrossRefGoogle Scholar
Cobelli, P., Pagneux, V., Maurel, A. & Petitjeans, P. 2011a Experimental study on water-wave trapped modes. J. Fluid Mech. 666, 445476.CrossRefGoogle Scholar
Cobelli, P., Przadka, A., Petitjeans, P., Lagubeau, G., Pagneux, V. & Maurel, A. 2011b Experimental investigation of different regimes for water wave turbulence. Phys. Rev. Lett. 107, 214503.CrossRefGoogle Scholar
Cooker, M. & Peregrine, D. 1995 Pressure-impulse theory for liquid impact problems. J. Fluid Mech. 297, 193214.CrossRefGoogle Scholar
Deegan, R. D., Brunet, P. & Eggers, J. 2008 Complexities of splashing. Nonlinearity 21 (1), C1C11.CrossRefGoogle Scholar
Eggers, J., Fontelos, M., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
Fedorchenko, A., Wang, A.-B. & Wang, Y.-H. 2005 Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface. Phys. Fluids 17, 093104.CrossRefGoogle Scholar
Lagubeau, G., Fontelos, M., Josserand, C., Maurel, A., Pagneux, V. & Petitjeans, P. 2010 Flower patterns in drop impact on thin liquid films. Phys. Rev. Lett. 105, 184503.CrossRefGoogle Scholar
Maurel, A., Cobelli, P., Pagneux, V. & Petitjeans, P. 2009 Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry. Appl. Opt. 48, 380392.CrossRefGoogle ScholarPubMed
Mundo, C., Sommerfeld, M. & Tropea, C. 1995 Droplet–wall collisions: experimental studies of the deformation and breakup process. Intl J. Multiphase Flow 21, 151173.CrossRefGoogle Scholar
Peregrine, D. 1981 The fascination of fluid mechanics. J. Fluid Mech. 106, 5980.CrossRefGoogle Scholar
Planchon, O. & Mouche, E. 2010 A physical model for the action of raindrop erosion on soil microtopography. Soil Sci. Soc. Am. J. 74, 10921103.CrossRefGoogle Scholar
Przadka, A., Cabane, B., Pagneux, V., Maurel, A. & Petitjeans, P. 2012 Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface? Exp. Fluids 52 (2), 519527.CrossRefGoogle Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 6193.CrossRefGoogle Scholar
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.CrossRefGoogle Scholar
Renardy, Y., Popinet, S., Duchemin, L., Renardy, M., Zaleski, S., Josserand, C., Drumright-Clarke, M., Richard, D., Clanet, C. & Quéré, D. 2003 Pyramidal and toroidal water drops after impact on a solid surface. J. Fluid Mech. 484, 6983.CrossRefGoogle Scholar
Rioboo, R., Marengo, M. & Tropea, C. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11, 155165.CrossRefGoogle Scholar
Roisman, I. 2009 Inertia dominated drop collisions. Part 2. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21, 052104.CrossRefGoogle Scholar
Roisman, I., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458 (2022), 14111430.CrossRefGoogle Scholar
Schroll, R., Josserand, C., Zaleski, S. & Zhang, W. 2010 Impact of a viscous liquid drop. Phys. Rev. Lett. 104, 034504.CrossRefGoogle Scholar
Takeda, M. & Mutoh, K. 1983 Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt. 22, 39773982.CrossRefGoogle ScholarPubMed
Worthington, A. 1908 A Study of Splashes. Macmillan (reprinted in 1963).Google Scholar
Xu, L., Zhang, W. & Nagel, S. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.CrossRefGoogle ScholarPubMed
Yarin, A. & Weiss, D. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar
Zable, J. L. 1977 Splatter during ink jet printing. IBM J. Res. Dev. 21 (4), 315320.CrossRefGoogle Scholar