Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-gblv7 Total loading time: 0.457 Render date: 2022-05-21T00:23:22.237Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Square cells in surface-tension-driven Bénard convection: experiment and theory

Published online by Cambridge University Press:  10 February 1998

KERSTIN ECKERT
Affiliation:
Center for Physical Fluid Dynamics, Department of Mechanical Engineering, Dresden University of Technology, 01062 Dresden, Germany
MICHAEL BESTEHORN
Affiliation:
Institute for Theoretical Physics and Synergetics, University of Stuttgart, Pfaffenwaldring 57/4, 70550 Stuttgart, Germany
ANDRÉ THESS
Affiliation:
Center for Physical Fluid Dynamics, Department of Mechanical Engineering, Dresden University of Technology, 01062 Dresden, Germany

Abstract

The convective flow in a thin liquid layer with a free surface heated from below is studied using a combination of accurate experiments with silicone oil (v=0.1 cm2 s−1) and high-resolution direct numerical simulations of the time-dependent governing equations. It is demonstrated that above a certain value εs of the threshold of primary instability, ε=0, square convection cells rather than the seemingly all-embracing hexagons are the persistent dominant features of Bénard convection. The transition from hexagonal to square cells sets in via a subcritical bifurcation and is accompanied by a sudden rapid increase of the Nusselt number. This implies that square cells are the more efficient mode of heat transport. Their wavenumber exceeds that of hexagonal cells by about 8%. The transition depends on the Prandtl number and it is shifted towards higher εs if the Prandtl number is increased. The replacement of hexagonal by square cells is mediated by pentagonal cells. In the transitional regime from hexagonal to square cells, characterized by the presence of all three planforms, the system exhibits complex irregular dynamics on large spatial and temporal scales. The time dependence becomes more vivid with decreasing Prandtl number until finally non-stationary square cells appear. The simulations agree with the experimental observations in the phenomenology of the transition, and in the prediction of both the higher Nusselt number of square Bénard cells and the subcritical nature of the transition. Quantitative differences occur with respect to the values of εs and the Prandtl number beyond which the time dependence vanishes. These differences are the result of a considerably weaker mean flow in the simulation and of residual inhomogeneities in the lateral boundary conditions of the experiment which are below the threshold of control.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
77
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Square cells in surface-tension-driven Bénard convection: experiment and theory
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Square cells in surface-tension-driven Bénard convection: experiment and theory
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Square cells in surface-tension-driven Bénard convection: experiment and theory
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *