Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T07:42:34.264Z Has data issue: false hasContentIssue false

Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body

Published online by Cambridge University Press:  07 April 2011

P. BOHORQUEZ
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Mecánica y Minera, Universidad Jaén, Campus de las Lagunillas, 23071 Jaén, Spain
E. SANMIGUEL-ROJAS
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Mecánica y Minera, Universidad Jaén, Campus de las Lagunillas, 23071 Jaén, Spain
A. SEVILLA
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, 28911 Leganés, Spain
J. I. JIMÉNEZ-GONZÁLEZ
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Mecánica y Minera, Universidad Jaén, Campus de las Lagunillas, 23071 Jaén, Spain
C. MARTÍNEZ-BAZÁN*
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingeniería Mecánica y Minera, Universidad Jaén, Campus de las Lagunillas, 23071 Jaén, Spain
*
Email address for correspondence: cmbazan@ujaen.es

Abstract

We investigate the stability properties and flow regimes of laminar wakes behind slender cylindrical bodies, of diameter D and length L, with a blunt trailing edge at zero angle of attack, combining experiments, direct numerical simulations and local/global linear stability analyses. It has been found that the flow field is steady and axisymmetric for Reynolds numbers below a critical value, Recs (L/D), which depends on the length-to-diameter ratio of the body, L/D. However, in the range of Reynolds numbers Recs(L/D) < Re < Reco(L/D), although the flow is still steady, it is no longer axisymmetric but exhibits planar symmetry. Finally, for Re > Reco, the flow becomes unsteady due to a second oscillatory bifurcation which preserves the reflectional symmetry. In addition, as the Reynolds number increases, we report a new flow regime, characterized by the presence of a secondary, low frequency oscillation while keeping the reflectional symmetry. The results reported indicate that a global linear stability analysis is adequate to predict the first bifurcation, thereby providing values of Recs nearly identical to those given by the corresponding numerical simulations. On the other hand, experiments and direct numerical simulations give similar values of Reco for the second, oscillatory bifurcation, which are however overestimated by the linear stability analysis due to the use of an axisymmetric base flow. It is also shown that both bifurcations can be stabilized by injecting a certain amount of fluid through the base of the body, quantified here as the bleed-to-free-stream velocity ratio, Cb = Wb/W.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achenbach, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62 (2), 209221.CrossRefGoogle Scholar
Arkas, D. R. & Redekopp, L. G. 2004 Aspects of wake vortex control through base blowing/suction. Phys. Fluids 16, 452456.CrossRefGoogle Scholar
Auguste, F., Fabre, D. & Magnaudet, J. 2010 Bifurcations in the wake of a thick circular disk. Theor. Comput. Fluid Dyn. 24, 305313.CrossRefGoogle Scholar
Bagheri, S., Schlatter, P., Schmid, P. J. & Henningson, D. 2009 Global stability of a jet in cross-flow. J. Fluid Mech. 624, 3344.CrossRefGoogle Scholar
Bearman, P. W. 1967 The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge. Aeronaut. Q. 18, 207224.CrossRefGoogle Scholar
Benzi, M., Golub, G. H. & Liesen, J. 2005 Numerical solution of saddle point problems. Acta Numerica 14, 1137.CrossRefGoogle Scholar
Berger, E., Scholz, D. & Schumm, M. 1990 Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations. J. Fluid Struct. 4, 231257.CrossRefGoogle Scholar
Bouchet, G., Mebarek, M. & Dušek, J. 2006 Hydrodynamic forces acting on a rigid fixed sphere in early transition regimes. Eur. J. Mech. B/Fluids 25, 321336.CrossRefGoogle Scholar
Brückner, C. 2001 Spatio-temporal reconstruction of vortex dynamics in axisymmetric wakes. J. Fluids Struct. 15, 543554.CrossRefGoogle Scholar
Choi, H., Jeon, W.-P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.CrossRefGoogle Scholar
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20, 051702.CrossRefGoogle Scholar
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics. Springer.CrossRefGoogle Scholar
Fuchs, H. V., Mercker, E. & Michel, U. 1979 Large-scale coherent structures in the wake of axisymmetric bodies. J. Fluid Mech. 93 (1), 185207.CrossRefGoogle Scholar
Ghidersa, B. & Dušek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 3369.Google Scholar
Goldburg, A. & Florsheim, B. H. 1966 Transition and Strouhal number for the incompressible wake of various bodies. Phys. Fluids 9 (1), 4550.CrossRefGoogle Scholar
Golubitsky, M., Stewart, I. & Schaeffer, D. G. 1988 Singularities and Groups in Bifurcation Theory. Springer.CrossRefGoogle Scholar
Hammond, D. A. & Redekopp, L. G. 1997 Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech. 331, 231260.CrossRefGoogle Scholar
Hannemann, K. & Oertel, H. Jr 1989 Numerical simulation of the absolutely and convectively unstable wake. J. Fluid Mech. 199, 5588.CrossRefGoogle Scholar
Issa, R. I. 1986 Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 4065.CrossRefGoogle Scholar
Jasak, H. 1996 Error analysis and estimation in the finite volume method with applications to fluid flows. PhD thesis, Imperial College, University of London.Google Scholar
Jasak, H., Weller, H. G. & Gosman, A. D. 1999 High resolution NVD differencing scheme for arbitrarily unstructured meshes. Intl J. Numer. Meth. Fluids 31, 431449.3.0.CO;2-T>CrossRefGoogle Scholar
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.Google Scholar
Kim, D. & Choi, H. 2003 Laminar flow past a hemisphere. Phys. Fluids 15 (8), 24572460.Google Scholar
Kim, H. J. & Durbin, P. A. 1988 Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation. Phys. Fluids 31 (11), 32603265.CrossRefGoogle Scholar
Kuznetsov, Y. A. 1995 Elements of Applied Bifurcation Theory. Springer.CrossRefGoogle Scholar
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19, 024102.CrossRefGoogle Scholar
Levi, E. 1980 Three-dimensional wakes: origin and evolution. J. Engng Mech. 106, 659676.Google Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.CrossRefGoogle Scholar
Margavey, R. & Bishop, R. L. 1961 Transition ranges for three-dimensional wakes. Can. J. Phys. 39, 14181422.Google Scholar
Meliga, P., Chomaz, J.-M. & Sipp, D. 2009 Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159189.CrossRefGoogle Scholar
Meliga, P., Sipp, D. & Chomaz, J.-M. 2010 a Effect of compressibility on the global stability of axisymmetric wake flows. J. Fluid Mech. 660, 499526.CrossRefGoogle Scholar
Meliga, P., Sipp, D. & Chomaz, J.-M. 2010 b Open-loop control of compressible afterbody flows using adjoint methods. Phys. Fluids 22, 054109.CrossRefGoogle Scholar
Monkewitz, P. A. 1988 A note on vortex shedding from axisymmetric bluff bodies. J. Fluid Mech. 192, 561575.CrossRefGoogle Scholar
Monkewitz, P. A. & Sohn, K. D. 1988 Absolute instability in hot jets. AIAA J. 28, 911916.CrossRefGoogle Scholar
Mullin, T., Seddon, J. R. T., Mantle, M. D. & Sederman, A. J. 2009 Bifurcation phenomena in the flow through a sudden expansion in a circular pipe. Phys. Fluids 21, 014110.CrossRefGoogle Scholar
Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323344.CrossRefGoogle Scholar
Oertel, H. Jr 1990 Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 22, 539564.CrossRefGoogle Scholar
Ormiéres, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev. Lett. 83 (1), 8083.CrossRefGoogle Scholar
Patankar, S. V. & Spalding, D. B. 1972 A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Intl J. Heat Mass Transfer 15 (10), 17871806.CrossRefGoogle Scholar
Pier, B. 2008 Local and global instabilities in the wake of a sphere. J. Fluid Mech. 603, 3961.CrossRefGoogle Scholar
Pier, B., Huerre, P., Chomaz, J.-M. & Couairon, A. 1998 Steep nonlinear global modes in spatially developing media. Phys. Fluids 10 (10), 24332435.CrossRefGoogle Scholar
Prasad, A. & Williamson, C. 1997 The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375402.CrossRefGoogle Scholar
Rhie, C. M. & Chow, W. L. 1983 Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21 (11), 15251532.CrossRefGoogle Scholar
Sakamoto, H. & Haniu, H. 1990 A study of vortex shedding from spheres in a uniform flow. J. Fluid Struct. 112, 386392.Google Scholar
Sanmiguel-Rojas, E., Sevilla, A., Martínez-Bazán, C. & Chomaz, J.-M. 2009 Global mode analysis of axisymmetric bluff-body wakes: stabilization by base bleed. Phys. Fluids 21, 114102.CrossRefGoogle Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schouveiler, L. & Provansal, M. 2002 Self-sustained oscillations in the wake of a sphere. Phys. Fluids 14 (11), 38463854.CrossRefGoogle Scholar
Schumm, M., Berger, E. & Monkewitz, P. A. 1994 Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 1753.CrossRefGoogle Scholar
Schwarz, V. & Bestek, H. 1994 Numerical simulation of nonlinear waves in the wake of an axisymmetric bluff body. In 25th AIAA Fluid Dynamics Conference. AIAA Paper 94-2285.Google Scholar
Sevilla, A. & Martínez-Bazán, C. 2004 Vortex shedding in high Reynolds number axisymmetric bluff-body wakes: Local linear instability and global bleed control. Phys. Fluids 16, 34603469.CrossRefGoogle Scholar
Sevilla, A. & Martínez-Bazán, C. 2006 A note on the stabilization of bluff-body wakes by low density base bleed. Phys. Fluids 18, 098102.CrossRefGoogle Scholar
Shenoy, A. R. & Kleinstreuer, C. 2008 Flow over a thin circular disk at low to moderate Reynolds numbers. J. Fluid Mech. 605, 253262.CrossRefGoogle Scholar
Stewart, B. E., Thompson, M. C., Leweke, T. & Hourigan, K. 2010 Numerical and experimental studies of the rolling sphere wake. J. Fluid Mech. 643, 137162.CrossRefGoogle Scholar
Taneda, S. 1956 Experimental investigation of the wake behind a sphere at low Reynolds numbers. J. Phys. Soc. Japan 11, 11041108.CrossRefGoogle Scholar
Taneda, S. 1978 Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106. J. Fluid Mech. 85 (1), 187192.CrossRefGoogle Scholar
Thompson, M. C., Leweke, T. & Provansal, M. 2001 Kinematics and dynamics of sphere wake transition. J. Fluids Struct. 15, 575585.CrossRefGoogle Scholar
Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.CrossRefGoogle Scholar
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.CrossRefGoogle Scholar
Wood, C. J. 1964 The effect of base bleed on a periodic wake. J. R. Aeronaut. Soc. 68, 477482.CrossRefGoogle Scholar
Wood, C. J. 1967 Visualization of an incompressible wake with base bleed. J. Fluid Mech. 29, 259272.CrossRefGoogle Scholar
Yaginuma, T. & Itō, H. 2008 Drag and wakes of freely falling 60° cones at intermediate Reynolds numbers. Phys. Fluids 20 (11), 117102.CrossRefGoogle Scholar

Bohorquez supplementary material

Plan view of streamwise vorticity contours, ωz = ± 0.05, during the single-frequency vortex shedding process observed in our numerical simulations close to criticality for Re = 415, highlighting the temporal features of Fig. 7

Download Bohorquez supplementary material(Video)
Video 7.7 MB

Bohorquez supplementary material

Plan view of streamwise vorticity contours, ωz = ± 0.05, during the single-frequency vortex shedding process observed in our numerical simulations close to criticality for Re = 415, highlighting the temporal features of Fig. 7

Download Bohorquez supplementary material(Video)
Video 7.6 MB

Bohorquez supplementary material

Plan view of streamwise vorticity contours, ωz = ± 0.05, illustrating the low frequency shedding of vortices shown in Fig. 10 for Re = 500.

Download Bohorquez supplementary material(Video)
Video 5.7 MB

Bohorquez supplementary material

Plan view of streamwise vorticity contours, ωz = ± 0.05, illustrating the low frequency shedding of vortices shown in Fig. 10 for Re = 500.

Download Bohorquez supplementary material(Video)
Video 4.1 MB