Hostname: page-component-7d684dbfc8-7nm9g Total loading time: 0 Render date: 2023-09-30T15:42:43.728Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Stationary bathtub vortices and a critical regime of liquid discharge

Published online by Cambridge University Press:  14 May 2008

Reactor Operations, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, PMB 1, Menai (Sydney), NSW, 2234,
Reactor Operations, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, PMB 1, Menai (Sydney), NSW, 2234,


A modified Lundgren model is applied for the description of stationary bathtub vortices in a viscous liquid with a free surface. Laminar liquid flow through the circular bottom orifice is considered in the horizontally unbounded domain. The liquid is assumed to be undisturbed at infinity and its depth is taken to be constant. Three different drainage regimes are studied: (i) subcritical, where whirlpool dents are less than the fluid depth; (ii) critical, where the whirlpool tips touch the outlet orifice; and (iii) supercritical, where surface vortices entrain air into the intake pipe. Particular attention is paid to critical vortices; the condition for their existence is determined and analysed. The influence of surface tension on subcritical whirlpools is investigated. Comparison of results with known experimental data is discussed.

Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Andersen, A., Bohr, T., Stenum, B., Rasmussen, J. J. & Lautrup, B. 2003 Anatomy of a bathtub vortex. Phys. Rev. Lett. 91, 104502.CrossRefGoogle ScholarPubMed
Andersen, A., Bohr, T., Stenum, B., Rasmussen, J. J. & Lautrup, B. 2006 The bathtub vortex in a rotating container. J. Fluid Mech. 556, 121146.CrossRefGoogle Scholar
Andrade, E. N. da C 1963 Whirlpools, vortices and bath tubs. New Sci. 17, 302304.Google Scholar
Baum, M. R. 1974 Gas entrainment at the free surface of a liquid: entrainment inception at a laminar vortex. J. Brit. Nucl. Engng Soc. 13, 203209.Google Scholar
Binnie, A. M. 1964 Some experiments on the bath-tub vortex. J. Mech. Engng Sci. 6, 256257.CrossRefGoogle Scholar
Chang, K. S. & Lee, D. J. 1995 An experimental investigation of the air entrainment in the shutdown cooling system during mid-loop operation. Ann. Nucl. Energy 22, 611619.CrossRefGoogle Scholar
Einstein, H. A. & Li, H. 1955 Steady vortex flow in a real fluid. La Houille Blanche 10, 483496.CrossRefGoogle Scholar
Forbes, L. K. & Hocking, G. C. 1995 The bath-plug vortex. J. Fluid Mech. 284, 4362.CrossRefGoogle Scholar
Gulliver, J. S., Paul, T. C. & Odgaard, A. J. 1988 J. Hydraul. Engng ASCE 114, 447452.CrossRefGoogle Scholar
Hecker, G. E. 1981 Model-prototype comparison of free surface vortices. J. Hydrol. Div. ASCE 7 (HY10), 12431259.Google Scholar
Hite, J. E. & Mih, W. C. 1994 Velocity of air-core vortices at hydraulic intakes. J. Hydraul. Engng ASCE 120, 284297.CrossRefGoogle Scholar
Jain, A. K., Raju, K. G. R. & Garde, R. J. 1978 Vortex formation at vertical pipe intakes. J. Hydrol. Div. ASCE 104 (HY10), 14291445.Google Scholar
Kelly, D. L., Martin, B. W. & Taylor, E. S. 1964 A further note on the bathtub vortex. J. Fluid Mech. 19, 539542.CrossRefGoogle Scholar
Kim, S.-N. 1994 A study on the free surface vortex in a pipe system. The 4th Intl Topical Meeting on Nuclear Thermal Hydrulics, Operations and Safety, Taipei, Taiwan, pp. 23-B-1–23-B-6.Google Scholar
Kocabaş, F. & Yildrim, N. 2002 Effect of circulation on critical submergence of an intake pipe. J. Hydraul. Res. 40, 741752.CrossRefGoogle Scholar
Knauss, J. 1987 Swirling flow problems at intakes. Hydraulic Structure Design Manual. Balkema.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.Google Scholar
Lautrup, B. 2005 Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World. IoP Publishing.Google Scholar
Lubin, B. T. & Springer, G. S. 1967 The formation of a dip on the surface of a liquid draining from a tank. J. Fluid Mech. 29, 385390.CrossRefGoogle Scholar
Lugt, H. J. 1983 Vortex Flow in Nature and Technology. J. Wiley.Google Scholar
Lundgren, T. S. 1985 The vertical flow above the drain-hole in a rotating vessel. J. Fluid Mech. 155, 381412.CrossRefGoogle Scholar
Marris, A. W. 1966 Theory of the bathtub vortex. J. Appl. Mech., Trans. ASME, 66-WA/APM-11.Google Scholar
Miles, J. 1998 A note on the Burgers–Rott vortex with a free surface. Z. Angew. Math. Phys. 49, 162165.CrossRefGoogle Scholar
Monji, H., Akimoto, T., Miwa, D. & Kamide, H. 2005 Behavior of free surface vortices in cylindrical vessel under fluctuating flow rate. In The 11th Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France.Google Scholar
Odgaard, A. J. 1986 Free-surface air core vortex. J. Hydraul. Engng ASCE 112, 610620.CrossRefGoogle Scholar
Rott, N. 1958 On the viscous core of a line vortex. Z. Angew Math. Phys. 9b, 543553.CrossRefGoogle Scholar
Sibulkin, M. 1962 A note on the bathtub vortex. J. Fluid Mech. 14, 2124.CrossRefGoogle Scholar
Sibulkin, M. 1983 A note on the bathtub vortex and the Earth's rotation. Am. Sci. 71, 352353.Google Scholar
Shapiro, A. H. 1962 Buth-tub vortex. Nature 196, 10801081.CrossRefGoogle Scholar
Stepanyants, Y. A. & Yeoh, G. H. 2008 Burgers–Rott vortices with surface tension. J. Angew Math. Phys. 59, 112.Google Scholar
Trefethen, L., Bilger, R. W., Fink, P. T., Luxton, R. E. & Tanner, R. I. 1965 The buth-tub vortex in the Southern hemisphere. Nature 207, 10841085.CrossRefGoogle Scholar
Turmlitz, O. 1908 Ein neuerphysikalischer Beweis der Achsendrehung der Erde. S.B. Akad. Wiss. Wien, Abt. IIa. 117, 819.Google Scholar
Tyvand, P. A. & Haugen, K. B. 2005 An impulsive bathtub vortex. Phys. Fluids 17, 062105.CrossRefGoogle Scholar
Zhou, Q.-N. & Graebel, W. P. 1990 Axisymmetric drainage of a cylindrical tank with a free surface. J. Fluid Mech. 221, 511532.CrossRefGoogle Scholar