Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-4x6s7 Total loading time: 0.356 Render date: 2022-01-27T04:00:24.467Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Steady flows inside and around a fluid sphere at low Reynolds numbers

Published online by Cambridge University Press:  20 April 2006

D. L. R. Oliver
Affiliation:
Department of Mechanical Engineering, Washington State University. Pullman, Washington 99164-2920
J. N. Chung
Affiliation:
Department of Mechanical Engineering, Washington State University. Pullman, Washington 99164-2920

Abstract

The effects of internal circulation in bubbles and droplets have been analysed by means of a semi-analytical series-truncation method. The equations of motion are transformed into a series of coupled, ordinary, nonlinear differential equations by use of orthogonal sets. These infinite-series equations are then truncated adequately and solved numerically. Using this series-truncation method, we have evaluated the effects of different ratios (between the continuous and dispersed phases) of both density and viscosity for the flows of low Reynolds numbers. For all the density ratios investigated, the density difference has almost no effect on the drag coefficient at low Reynolds numbers. The shear stress and the drag coefficient increase with increasing viscosity ratio of droplet to ambience and decrease with increasing Reynolds number.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Alim, A. H. & Hamielec, A. E. 1975 Ind. Engng Chem. Fund. 14, 308.
Beard, K. V. & Pruppacher, H. R. 1969 J. Atmos. Sci. 26, 1066.
Brabston, D. C. 1974 Numerical solution of steady viscous flow past spheres and gas bubbles. Ph. D. thesis, Calif. Inst. of Tech.
Brabston, D. C. & Keller, H. B. 1975 J. Fluid Mech. 69, 179.
Chao, B. T. 1962 Phys. Fluids 5, 69.
Chester, W. & Breach, D. K. 1969 J. Fluid Mech. 37, 751.
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles, Chap. 3 and 5. Academic.
Dennis, S. C. R. & Walker, J. D. A. 1971 J. Fluid Mech. 48, 771.
Dennis, S. C. R., Walker, J. D. A. & Hudson, J. D. 1973 J. Fluid Mech. 60, 273.
Dennis, S. C. R. & Walker, M. S. 1964 Aero. Res. Counc. no. 26, 105.
Hadamard, J. 1911 C.K. Acad. Sci. 152, 1735.
Hamielec, A. E., Hoffman, T. Q. & Ross, L. L. 1967 AICHE J. 12, 212.
Hamielec, A. E. & Johnson, A. I. 1962 Can. J. Chem. Engng 40, 246.
Hamielec, A. E., Storey, A. E. & Whitehead, J. M. 1963 Can. J. Chem. Engng 41, 246.
Harper, J. F. 1972 Adv. Appl. Mech. 12, 59.
Harper, J. F. & Moore, D. W. 1968 J. Fluid Mech. 32, 369.
Leclair, B. P., Hamielec, A. E. & Pruppacher, H. R. 1970 J. Atmos. Sci. 27, 308.
Mcdonald, J. E. 1954 J. Met. 11, 478.
Maxworthy, T. 1965 J. Fluid Mech. 23, 369.
Moore, D. W. 1963 J. Fluid Mech. 16, 161.
Nakano, Y. & Tien, C. 1963 Can. J. Chem. Engng 41, 135.
Prakash, S. & Sirignano, W. A. 1980 Intl J. Heat Mass Transfer 21, 885.
Proudman, I. & Pearson, J. R. A. 1957 J. Fluid Mech. 2, 237.
Pruppacher, H. R. & Beard, K. V. 1970 Q. J. R. Met. Soc. 96, 247.
Pruppacher, H. R. & Klett, J. D. 1978 Microphysics of the Clouds and Circulation. Reidel.
Pruppacher, H. R., LeClair, B. P. & Hamielec, A. E. 1970 J. Fluid Mech. 44, 781.
Pruppacher, H. R. & Steinberger, E. H. 1968 J. Appl. Phys. 39, 4129.
Rivkind, V. Ya. & Ryskin, G. M. 1976 Fluid Dyn. 11, 5.
Rivkind, V. Ya., Ryskin, G. M. & Fishbein, G. A. 1976 Appl. Math. Mech. 40, 687.
Rottenberg, M., Bivins, R., Metropolis, N. & Wooten, J. K. 1959 The 3-J and 6-J Symbols. MIT, Cambridge: The Technology Press.
Rybcznski, W. 1911 Bull. Int. Acad. Pol. Sci. Lett. Cl. Sci. Math. Natur., Ser. A, 40.
Talman, J. D. 1968 Special Functions. Benjamin.
Taylor, T. D. & Acrivos, A. 1964 J. Fluid Mech. 18, 466.
Underwood, R. L. 1969 J. Fluid Mech. 37, 95.
Van Dyke, M. D. 1965 Stanford University SUDAER 247.
Winnikow, S. & Chao, B. T. 1965 Phys. Fluids 9, 50.
28
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Steady flows inside and around a fluid sphere at low Reynolds numbers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Steady flows inside and around a fluid sphere at low Reynolds numbers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Steady flows inside and around a fluid sphere at low Reynolds numbers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *