Published online by Cambridge University Press: 10 July 2008
We present a new compact expansion of a random flow field into stochastic spatial modes, hence extending the proper orthogonal decomposition (POD) to noisy (non-coherent) flows. As a prototype problem, we consider unsteady laminar flow past a circular cylinder subject to random inflow characterized as a stationary Gaussian process. We first obtain random snapshots from full stochastic simulations (based on polynomial chaos representations), and subsequently extract a small number of deterministic modes and corresponding stochastic modes by solving a temporal eigenvalue problem. Finally, we determine optimal sets of random projections for the stochastic Navier–Stokes equations, and construct reduced-order stochastic Galerkin models. We show that the number of stochastic modes required in the reconstruction does not directly depend on the dimensionality of the flow system. The framework we propose is general and it may also be useful in analysing turbulent flows, e.g. in quantifying the statistics of energy exchange between coherent modes.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.