Hostname: page-component-6b989bf9dc-jks4b Total loading time: 0 Render date: 2024-04-15T05:12:48.182Z Has data issue: false hasContentIssue false

Thermo-osmotic transport in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory

Published online by Cambridge University Press:  28 April 2021

Vishal Sankar Sivasankar
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD20742, USA
Sai Ankit Etha
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD20742, USA
Harnoor Singh Sachar
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD20742, USA
Siddhartha Das*
Affiliation:
Department of Mechanical Engineering, University of Maryland, College Park, MD20742, USA
*
Email address for correspondence: sidd@umd.edu

Abstract

In this paper, we develop a theory to establish that the thermo-osmotic (TOS) effects, induced by the application of an axial temperature gradient, lead to a massive enhancement in liquid transport in nanochannels grafted with charged polyelectrolyte (PE) brushes. We quantify the TOS transport by quantifying the induced electric field and the induced TOS flow field. The different components of the electric field, namely the ionic component, the thermal component and the osmotic component, as well as the contributions of different ions to these components, are quantified. Furthermore, we express the TOS velocity as a combination of chemiosmotic (COS), thermal and electro-osmotic (EOS) components. The COS and the thermal components augment each other and the overall strength and direction of the TOS flow are dictated by the direction and the relative strength of the EOS component. Most importantly, we compare the cases of brush-grafted nanochannels with those of the brush-free nanochannels of identical surface charge densities: the TOS transport is massively augmented in the brush-grafted nanochannels attributed to the combination of the localization of the electric double layer (EDL) (and hence any body force that depends on the EDL charge density) away from the nanochannel wall (i.e. the location of the maximum drag force) and the presence of a possible molecular slip (experienced by the liquid) along the brush surface.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, S. 1977 Polymer adsorption on small spheres. A scaling approach. J. Phys. 38, 977981.10.1051/jphys:01977003808097700CrossRefGoogle Scholar
Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S. & Ensinger, W. 2013 Carbohydrate-mediated biomolecular recognition and gating of synthetic ion channels. J. Phys. Chem. C 117, 1823418242.10.1021/jp4054555CrossRefGoogle Scholar
Ali, M., Ramirez, P., Mafe, S., Neumann, R. & Ensinger, W. 2009 A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3, 603608.10.1021/nn900039fCrossRefGoogle ScholarPubMed
Ali, M., Tahir, M.N., Siwy, Z., Neumann, R., Tremel, W. & Ensinger, W. 2011 Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal. Chem. 83, 16731680.10.1021/ac102795aCrossRefGoogle ScholarPubMed
Anand, A., Unnikrishnan, B., Mao, J.Y., Lin, H.J. & Huang, C.C. 2018 Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–a review. Desalination 429, 119133.10.1016/j.desal.2017.12.012CrossRefGoogle Scholar
Agar, J.N., Mou, C.Y. & Lin, J.L. 1989 Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory. J. Phys. Chem. 93, 20792082.10.1021/j100342a073CrossRefGoogle Scholar
Benson, L., Yeh, L.H., Chou, T.H. & Qian, S. 2013 Field effect regulation of Donnan potential and electrokinetic flow in a functionalized soft nanochannel. Soft Matt. 9, 97679773.10.1039/c3sm51981cCrossRefGoogle Scholar
Cao, Q. 2019 Anisotropic electrokinetic transport in channels modified with patterned polymer brushes. Soft Matt. 15, 41324145.10.1039/C9SM00385ACrossRefGoogle ScholarPubMed
Cao, Q., Tian, X. & You, H. 2018 Electrohydrodynamics in nanochannels coated by mixed polymer brushes: effects of electric field strength and solvent quality. Model. Simul. Mater. Sci. Engng 26, 035003.10.1088/1361-651X/aaa6a1CrossRefGoogle Scholar
Cao, Q. & You, H. 2016 Electroosmotic flow in mixed polymer brush-grafted nanochannels. Polymers 8, 438448.10.3390/polym8120438CrossRefGoogle ScholarPubMed
Chakraborty, S. & Das, S. 2008 Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Hückel limit. Phys. Rev. E 77, 037303.10.1103/PhysRevE.77.037303CrossRefGoogle ScholarPubMed
Chen, F., et al. 2017 Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 11, 42754282.10.1021/acsnano.7b01350CrossRefGoogle ScholarPubMed
Chen, G. & Das, S. 2015 a Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density. J. Appl. Phys. 117, 185304.10.1063/1.4919813CrossRefGoogle Scholar
Chen, G. & Das, S. 2015 b Electrostatics of soft charged interfaces with pH-dependent charge density: effect of consideration of appropriate hydrogen ion concentration distribution. RSC Adv. 5, 44934501.10.1039/C4RA13946ACrossRefGoogle Scholar
Chen, G. & Das, S. 2017 Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes. J. Phys. Chem. B 121, 31303141.CrossRefGoogle ScholarPubMed
Chen, G., Sachar, H.S. & Das, S. 2018 Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration. Soft Matt. 14, 52465255.CrossRefGoogle ScholarPubMed
Chen, K., Yao, L., Yan, F., Liu, S., Yang, R. & Su, B. 2019 Thermo-osmotic energy conversion and storage by nanochannels. J. Mater. Chem. A 7, 2525825261.10.1039/C9TA08992FCrossRefGoogle Scholar
Das, S. & Chakraborty, S. 2009 Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle wall interactions. Langmuir 25, 98639872.CrossRefGoogle ScholarPubMed
Das, S. & Chakraborty, S. 2010 Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. Langmuir 26, 1158911596.CrossRefGoogle ScholarPubMed
Das, S., Dubsky, P., van den Berg, A. & Eijkel, J.C. 2012 Concentration polarization in translocation of DNA through nanopores and nanochannels. Phys. Rev. Lett. 108, 138101.10.1103/PhysRevLett.108.138101CrossRefGoogle ScholarPubMed
De Gennes, P.G. 1976 a Dynamics of entangled polymer solutions. II. Inclusion of hydrodynamic interactions. Macromolecules 9, 594598.10.1021/ma60052a012CrossRefGoogle Scholar
De Gennes, P.G. 1976 b Scaling theory of polymer adsorption. J. Phys. 37, 14451452.10.1051/jphys:0197600370120144500CrossRefGoogle Scholar
Dietzel, M. & Hardt, S. 2016 Thermoelectricity in confined liquid electrolytes. Phys. Rev. Lett. 116, 225901.10.1103/PhysRevLett.116.225901CrossRefGoogle ScholarPubMed
Dietzel, M. & Hardt, S. 2017 Flow and streaming potential of an electrolyte in a channel with an axial temperature gradient. J. Fluid Mech. 813, 10601111.10.1017/jfm.2016.844CrossRefGoogle Scholar
Eijkel, J.C. & Van Den Berg, A. 2005 Nanofluidics: what is it and what can we expect from it? Microfluid Nanofluid 1, 249267.10.1007/s10404-004-0012-9CrossRefGoogle Scholar
Fang, R., Zhang, H., Yang, L., Wang, H., Tian, Y., Zhang, X. & Jiang, L. 2016 Supramolecular self-assembly induced adjustable multiple gating states of nanofluidic diodes. J. Am. Chem. Soc. 138, 1637216379.CrossRefGoogle ScholarPubMed
Freed, K.F. & Edwards, S.F. 1974 Polymer viscosity in concentrated solutions. J. Chem. Phys. 61, 36263633.10.1063/1.1682545CrossRefGoogle Scholar
Galla, L., Meyer, A.J., Spiering, A., Sischka, A., Mayer, M., Hall, A.R., Reimann, P. & Anselmetti, D. 2014 Hydrodynamic slip on DNA observed by optical tweezers-controlled translocation experiments with solid-state and lipid-coated nanopores. Nano Lett. 14, 41764182.10.1021/nl501909tCrossRefGoogle ScholarPubMed
Gao, J., Feng, Y., Guo, W. & Jiang, L. 2017 Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem. Soc. Rev. 46, 54005424.10.1039/C7CS00369BCrossRefGoogle ScholarPubMed
Gross, R.J. & Osterle, J.F. 1968 Membrane transport characteristics of ultrafine capillaries. J. Chem. Phys. 49, 228234.10.1063/1.1669814CrossRefGoogle ScholarPubMed
Haynes, W.M. (Ed.) 2014 CRC Handbook of Chemistry and Physics. CRC Press.10.1201/b17118CrossRefGoogle Scholar
Hirano, K., Iwaki, T., Ishido, T., Yoshikawa, Y., Naruse, K. & Yoshikawa, K. 2018 Stretching of single DNA molecules caused by accelerating flow on a microchip. J. Chem. Phys. 149, 165101.10.1063/1.5040564CrossRefGoogle ScholarPubMed
Hood, R.L., Hood, G.D., Ferrari, M. & Grattoni, A. 2017 Pioneering medical advances through nanofluidic implantable technologies. WIRE Nanomed. Nanobiotechnol. 9, e1455.10.1002/wnan.1455CrossRefGoogle ScholarPubMed
Hsu, J.P., Yang, S.T., Lin, C.Y. & Tseng, S. 2019 Voltage-controlled ion transport and selectivity in a conical nanopore functionalized with pH-tunable polyelectrolyte brushes. J. Colloid Interface Sci. 537, 496504.10.1016/j.jcis.2018.11.046CrossRefGoogle Scholar
Huang, W.C. & Hsu, J.P. 2019 Regulating the ionic current rectification behavior of branched nanochannels by filling polyelectrolytes. J. Colloid Interface Sci. 557, 683690.10.1016/j.jcis.2019.09.062CrossRefGoogle ScholarPubMed
Jing, H. & Das, S. 2018 Theory of diffusioosmosis in a charged nanochannel. Phys. Chem. Chem. Phys. 20, 1020410212.CrossRefGoogle Scholar
Khatibi, M., Ashrafizadeh, S.N. & Sadeghi, A. 2020 Covering the conical nanochannels with dense polyelectrolyte layers significantly improves the ionic current rectification. Anal. Chem. Acta 1122, 4860.10.1016/j.aca.2020.05.011CrossRefGoogle ScholarPubMed
Kim, Y.W., Lobaskin, V., Gutsche, C., Kremer, F., Pincus, P. & Netz, R.R. 2009 Nonlinear response of grafted semiflexible polymers in shear flow. Macromolecules 42, 36503655.10.1021/ma900184eCrossRefGoogle Scholar
Koltonow, A.R. & Huang, J. 2016 Two-dimensional nanofluidics. Science 351, 13951396.10.1126/science.aaf5289CrossRefGoogle ScholarPubMed
Lebedeva, I.O., Zhulina, E.B. & Borisov, O.V. 2017 Self-consistent field theory of polyelectrolyte brushes with finite chain extensibility. J. Chem. Phys. 146, 214901.CrossRefGoogle ScholarPubMed
Li, T., et al. 2019 Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Mater. 18, 608613.10.1038/s41563-019-0315-6CrossRefGoogle ScholarPubMed
Lin, T.W., Hsu, J.P., Lin, C.Y. & Tseng, S. 2019 Dual pH gradient and voltage modulation of ion transport and current rectification in biomimetic nanopores functionalized with a pH-Tunable POLYELECTROLYTE. J. Phys. Chem. C 123, 1243712443.10.1021/acs.jpcc.8b11707CrossRefGoogle Scholar
Lin, J.Y., Lin, C.Y., Hsu, J.P. & Tseng, S. 2016 Ionic current rectification in a pH-tunable polyelectrolyte brushes functionalized conical nanopore: effect of salt gradient. Anal. Chem. 88, 11761187.10.1021/acs.analchem.5b03074CrossRefGoogle Scholar
Liu, M., Zhang, H., Li, K., Heng, L., Wang, S., Tian, Y. & Jiang, L. 2015 A bio-inspired potassium and pH responsive double-gated nanochannel. Adv. Funct. Mater. 25, 421426.10.1002/adfm.201401655CrossRefGoogle Scholar
Lyatskaya, Y.V., Leermakers, F.A.M., Fleer, G.J., Zhulina, E.B. & Birshtein, T.M. 1995 Analytical self-consistent-field model of weak polyacid brushes. Macromolecules 28, 35623569.CrossRefGoogle Scholar
Maheedhara, R.S., Jing, H., Sachar, H.S. & Das, S. 2018 a Highly enhanced liquid flows via thermoosmotic effects in soft and charged nanochannels. Phys. Chem. Chem. Phys. 20, 2430024316.10.1039/C8CP04089CCrossRefGoogle ScholarPubMed
Maheedhara, R.S., Sachar, H.S., Jing, H. & Das, S. 2018 b Ionic diffusoosmosis in nanochannels grafted with end-charged polyelectrolyte brushes. J. Phys. Chem. B 122, 74507461.10.1021/acs.jpcb.8b04827CrossRefGoogle ScholarPubMed
Miles, B.N., Ivanov, A.P., Wilson, K.A., Doan, F., Japrung, D. & Edel, J.B. 2013 Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem. Soc. Rev. 42, 1528.10.1039/C2CS35286ACrossRefGoogle ScholarPubMed
Milne, Z., Yeh, L.H., Chou, T.H. & Qian, S. 2014 Tunable Donnan potential and electrokinetic flow in a biomimetic gated nanochannel with pH-regulated polyelectrolyte brushes. J. Phys. Chem. C 118, 1980619813.CrossRefGoogle Scholar
Pennathur, S. & Santiago, J.G. 2005 Electrokinetic transport in nanochannels. 2. Experiments. Anal. Chem. 77, 67826789.10.1021/ac0508346CrossRefGoogle ScholarPubMed
Peters, P.B., Van Roij, R., Bazant, M.Z. & Biesheuvel, P.M. 2016 Analysis of electrolyte transport through charged nanopores. Phys. Rev. E 93, 053108.10.1103/PhysRevE.93.053108CrossRefGoogle ScholarPubMed
Poddar, A., Maity, D., Bandopadhyay, A. & Chakraborty, S. 2016 Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matt. 12, 59685978.CrossRefGoogle ScholarPubMed
Qian, S., Das, B. & Luo, X. 2007 Diffusioosmotic flows in slit nanochannels. J. Colloid Interface Sci. 315, 721730.10.1016/j.jcis.2007.06.075CrossRefGoogle ScholarPubMed
Reshadi, M. & Saidi, M.H. 2019 Tuning the dispersion of reactive solute by steady and oscillatory electroosmotic-Poiseuille flows in polyelectrolyte-grafted micro/nanotubes. J. Fluid Mech. 880, 73112.CrossRefGoogle Scholar
Ryzhkov, I.I., Lebedev, D.V., Solodovnichenko, V.S., Minakov, A.V. & Simunin, M.M. 2018 On the origin of membrane potential in membranes with polarizable nanopores. J. Membr. Sci. 549, 616630.10.1016/j.memsci.2017.11.073CrossRefGoogle Scholar
Ryzhkov, I.I., Lebedev, D.V., Solodovnichenko, V.S., Shiverskiy, A.V. & Simunin, M.M. 2017 Induced-charge enhancement of the diffusion potential in membranes with polarizable nanopores. Phys. Rev. Lett. 119, 226001.10.1103/PhysRevLett.119.226001CrossRefGoogle ScholarPubMed
Sachar, H.S., Sivasankar, V.S. & Das, S. 2019 a Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory. Soft Matt. 15, 59735986.CrossRefGoogle ScholarPubMed
Sachar, H.S., Sivasankar, V.S. & Das, S. 2019 b Revisiting the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of excluded volume interactions and an expanded form of the mass action law. Soft Matt. 15, 559574.10.1039/C8SM02163ECrossRefGoogle Scholar
Sachar, H.S., Sivasankar, V.S., Etha, S.A., Chen, G. & Das, S. 2020 Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Electrophoresis 41, 554561.10.1002/elps.201900248CrossRefGoogle ScholarPubMed
Sadeghi, A. 2018 Theoretical modeling of electroosmotic flow in soft microchannels: a variational approach applied to the rectangular geometry. Phys. Fluid 30, 032004.10.1063/1.5016270CrossRefGoogle Scholar
Sadeghi, A., Azari, M. & Hardt, S. 2019 Electroosmotic flow in soft microchannels at high grafting densities. Phys. Rev. Fluid 4, 063701.10.1103/PhysRevFluids.4.063701CrossRefGoogle Scholar
Sadeghi, M., Saidi, M.H., Moosavi, A. & Kroger, M. 2020 a Tuning electrokinetic flow, ionic conductance, and selectivity in a solid-state nanopore modified with a pH-responsive polyelectrolyte brush: a molecular theory approach. J. Phys. Chem. C 124, 1851318531.CrossRefGoogle Scholar
Sadeghi, M., Saidi, M.H., Moosavi, A. & Sadeghi, A. 2020 b Unsteady solute dispersion by electrokinetic flow in a polyelectrolyte layer-grafted rectangular microchannel with wall absorption. J. Fluid Mech. 887, A13.10.1017/jfm.2019.1083CrossRefGoogle Scholar
Silkina, E.F., Bag, N. & Vinogradova, O.I. 2020 Electro-osmotic properties of porous permeable films. Phys. Rev. Fluid 5, 123701.CrossRefGoogle Scholar
Sin, J.S. & Kim, U.H. 2018 Ion size effect on electrostatic and electroosmotic properties in soft nanochannels with pH-dependent charge density. Phys. Chem. Chem. Phys. 20, 2296122971.10.1039/C8CP04185GCrossRefGoogle ScholarPubMed
Sivasankar, V.S., Etha, S.A., Sachar, H.S. & Das, S. 2020 a Ionic diffusioosmotic transport in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory. Phys. Fluid 32, 042003.CrossRefGoogle Scholar
Sivasankar, V.S., Etha, S.A., Sachar, H.S. & Das, S. 2020 b Theoretical study on the massively augmented electro-osmotic water transport in polyelectrolyte brush functionalized nanoslits. Phys. Rev. E 102, 013103.10.1103/PhysRevE.102.013103CrossRefGoogle ScholarPubMed
Sparreboom, W., van den Berg, A. & Eijkel, J.C. 2009 Principles and applications of nanofluidic transport. Nature Nanotech. 4, 713720.CrossRefGoogle Scholar
Talebi, R., Ashrafizadeh, S.N. & Sadeghi, A. 2021 Hydrodynamic dispersion by electroosmotic flow in soft microchannels: consideration of different properties for electrolyte and polyelectrolyte layer. Chem. Engng Sci. 229, 116058.10.1016/j.ces.2020.116058CrossRefGoogle Scholar
Venkatesan, B.M. & Bashir, R. 2011 Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615624.CrossRefGoogle ScholarPubMed
Weerakoon-Ratnayake, K.M., O'Neil, C.E., Uba, F.I. & Soper, S.A. 2017 Thermoplastic nanofluidic devices for biomedical applications. Lab on a Chip 17, 362381.10.1039/C6LC01173JCrossRefGoogle ScholarPubMed
Wu, C.T. & Hsu, J.P. 2021 Electrokinetic behavior of bullet-shaped nanopores modified by functional groups: influence of finite thickness of modified layer. J. Colloid Interface Sci. 582, 741751.CrossRefGoogle ScholarPubMed
Wynveen, A. & Likos, C.N. 2009 Interactions between planar stiff polyelectrolyte brushes. Phys. Rev. E 80, 010801.10.1103/PhysRevE.80.010801CrossRefGoogle ScholarPubMed
Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W. & Azzaroni, O. 2009 Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes. J. Am. Chem. Soc. 131, 20702071.CrossRefGoogle ScholarPubMed
Yameen, B., Ali, M., Neumann, R., Ensinger, W., Knoll, W. & Azzaroni, O. 2010 Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chem. Commun. 46, 19081910.10.1039/B920870DCrossRefGoogle ScholarPubMed
Yeh, L.H., Zhang, M., Hu, N., Joo, S.W., Qian, S. & Hsu, J.P. 2012 a Electrokinetic ion and fluid transport in nanopores functionalized by polyelectrolyte brushes. Nanoscale 4, 51695177.CrossRefGoogle ScholarPubMed
Yeh, L.H., Zhang, M., Joo, S.W., Qian, S. & Hsu, J.P. 2012 b Controlling pH-regulated bionanoparticles translocation through nanopores with polyelectrolyte brushes. Anal. Chem. 84, 96159622.10.1021/ac302429dCrossRefGoogle ScholarPubMed
Yeh, L.H., Zhang, M., Qian, S., Hsu, J.P. & Tseng, S. 2012 c Ion concentration polarization in polyelectrolyte-modified nanopores. J. Phys. Chem. C 116, 86728677.CrossRefGoogle Scholar
Zeng, Z., Ai, Y. & Qian, S. 2014 pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes. Phys. Chem. Chem. Phys. 16, 24652474.CrossRefGoogle ScholarPubMed
Zeng, Z., Yeh, L.H., Zhang, M. & Qian, S. 2015 Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes. Nanoscale 7, 1702017029.CrossRefGoogle ScholarPubMed
Zhang, K., Jia, N., Li, S. & Liu, L. 2019 Static and dynamic behavior of CO2 enhanced oil recovery in shale reservoirs: experimental nanofluidics and theoretical models with dual-scale nanopores. Appl. Energy 255, 113752.CrossRefGoogle Scholar
Zhou, C., Mei, L., Su, Y.S., Yeh, L.H., Zhang, X. & Qian, S. 2016 Gated ion transport in a soft nanochannel with biomimetic polyelectrolyte brush layers. Sens. Actuators B 229, 305314.10.1016/j.snb.2016.01.075CrossRefGoogle Scholar
Zhu, Z., Wang, D., Tian, Y. & Jiang, L. 2019 Ion/molecule transportation in nanopores and nanochannels: from critical principles to diverse functions. J. Am. Chem. Soc. 141, 86588669.10.1021/jacs.9b00086CrossRefGoogle ScholarPubMed
Zhulina, E.B. & Borisov, O.V. 1997 Structure and interaction of weakly charged polyelectrolyte brushes: self-consistent field theory. J. Chem. Phys. 107, 59525967.CrossRefGoogle Scholar
Zhulina, E.B., Klein Wolterink, J. & Borisov, O.V. 2000 Screening effects in a polyelectrolyte brush: self-consistent-field theory. Macromolecules 33, 49454953.CrossRefGoogle Scholar
Zhulina, Y.B., Pryamitsyn, V.A. & Borisov, O.V. 1989 Structure and conformational transitions in grafted polymer chain layers. A new theory. Pol. Sci. USSR 31, 205216.CrossRefGoogle Scholar
Ziemys, A., Kojic, M., Milosevic, M. & Ferrari, M. 2012 Interfacial effects on nanoconfined diffusive mass transport regimes. Phys. Rev. Lett. 108, 236102.CrossRefGoogle ScholarPubMed
Zimmermann, R., Gunkel-Grabole, G., Bünsow, J., Werner, C., Huck, W.T. & Duval, J.F. 2017 Evidence of ion-pairing in cationic brushes from evaluation of brush charging and structure by electrokinetic and surface conductivity analysis. J. Phys. Chem. C 121, 29152922.CrossRefGoogle Scholar
Supplementary material: File

Sivasankar et al. supplementary material

Sivasankar et al. supplementary material

Download Sivasankar et al. supplementary material(File)
File 799 KB