Hostname: page-component-5b777bbd6c-gcwzt Total loading time: 0 Render date: 2025-06-25T20:15:34.667Z Has data issue: false hasContentIssue false

A three-layer Hele-Shaw problem driven by a sink

Published online by Cambridge University Press:  31 October 2024

Meng Zhao*
Affiliation:
Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, PR China
Amlan K. Barua
Affiliation:
Department of Mathematics, IIT Dharwad, Dharwad, Karnataka 580011, India
John S. Lowengrub
Affiliation:
Department of Mathematics, University of California-Irvine, CA 92521, USA
Wenjun Ying
Affiliation:
School of Mathematical Sciences and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China
Shuwang Li*
Affiliation:
Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA
*
Email addresses for correspondence: mzhao9@hust.edu.cn, sli15@iit.edu
Email addresses for correspondence: mzhao9@hust.edu.cn, sli15@iit.edu

Abstract

In this paper, we investigate a sink-driven three-layer flow in a radial Hele-Shaw cell. The three fluids are of different viscosities, with one fluid occupying an annulus-like domain, forming two interfaces with the other two fluids. Using a boundary integral method and a semi-implicit time stepping scheme, we alleviate the numerical stiffness in updating the interfaces and achieve spectral accuracy in space. The interaction between the two interfaces introduces novel dynamics leading to rich pattern formation phenomena, manifested by two typical events: either one of the two interfaces reaches the sink faster than the other (forming cusp-like morphology), or they come very close to each other (suggesting a possibility of interface merging). In particular, the inner interface can be wrapped by the other to have both scenarios. We find that multiple parameters contribute to the dynamics, including the width of the annular region, the location of the sink, and the mobilities of the fluids.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aniss, S., Brancher, J.P. & Souhar, M. 1993 Thermal convection in a magnetic fluid in an annular Hele-Shaw cell. J. Magn. Magn. Mater. 122 (1–3), 319322.CrossRefGoogle Scholar
Anjos, P.H.A. & Li, S. 2020 Weakly nonlinear analysis of the Saffman–Taylor problem in a radially spreading fluid annulus. Phys. Rev. Fluids 5 (5), 054002.CrossRefGoogle Scholar
Anjos, P.H.A., Zhao, M., Lowengrub, J.S. & Li, S. 2022 Electrically controlled self-similar evolution of viscous fingering patterns. Phys. Rev. Fluids 7 (5), 053903.CrossRefGoogle Scholar
Beeson-Jones, T.H. & Woods, A.W. 2015 On the selection of viscosity to suppress the Saffman–Taylor instability in a radially spreading annulus. J. Fluid Mech. 782, 127143.CrossRefGoogle Scholar
Bischofberger, I., Ramachandran, R. & Nagel, S.R. 2015 An island of stability in a sea of fingers: emergent global features of the viscous-flow instability. Soft Matt. 11 (37), 74287432.CrossRefGoogle Scholar
Brahim, A.A. & Thoroddsen, S.T. 2022 Bubble eruptions in a multilayer Hele-Shaw flow. Phys. Rev. E 105 (4), 045101.CrossRefGoogle Scholar
Cardoso, S.S.S. & Woods, A.W. 1995 The formation of drops through viscous instability. J. Fluid Mech. 289, 351378.CrossRefGoogle Scholar
Carrillo, L., Soriano, J. & Ortın, J. 1999 Radial displacement of a fluid annulus in a rotating Hele-Shaw cell. Phys. Fluids 11 (4), 778785.CrossRefGoogle Scholar
Carrillo, L., Soriano, J. & Ortın, J. 2000 Interfacial instabilities of a fluid annulus in a rotating Hele-Shaw cell. Phys. Fluids 12 (7), 16851698.CrossRefGoogle Scholar
Ceniceros, H.D., Hou, T.Y. & Si, H. 1999 Numerical study of Hele-Shaw flow with suction. Phys. Fluids 11 (9), 24712486.CrossRefGoogle Scholar
Chakraborty, I., Ricouvier, J., Yazhgur, P., Tabeling, P. & Leshansky, A.M. 2019 Droplet generation at Hele-Shaw microfluidic T-junction. Phys. Fluids 31 (2), 022010.CrossRefGoogle Scholar
Chen, J.D. 1989 Growth of radial viscous fingers in a Hele-Shaw cell. J. Fluid Mech. 201, 223242.CrossRefGoogle Scholar
Coutinho, I.M. & Miranda, J.A. 2020 Control of viscous fingering through variable injection rates and time-dependent viscosity fluids: beyond the linear regime. Phys. Rev. E 102 (6), 063102.CrossRefGoogle ScholarPubMed
Crowdy, D. 1999 Circulation-induced shape deformations of drops and bubbles: exact two-dimensional models. Phys. Fluids 11 (10), 28362845.CrossRefGoogle Scholar
Crowdy, D. 2002 Theory of exact solutions for the evolution of a fluid annulus in a rotating Hele-Shaw cell. Q. Appl. Maths 60 (1), 1136.CrossRefGoogle Scholar
Crowdy, D. & Kang, H. 2001 Squeeze flow of multiply-connected fluid domains in a Hele-Shaw cell. J. Nonlinear Sci. 11, 279304.CrossRefGoogle Scholar
Cummings, L.J. & King, J.R. 2004 Hele-Shaw flow with a point sink: generic solution breakdown. Eur. J. Appl. Maths 15 (1), 137.CrossRefGoogle Scholar
Dallaston, M.C. & McCue, S.W. 2012 New exact solutions for Hele-Shaw flow in doubly connected regions. Phys. Fluids 24 (5), 052101.CrossRefGoogle Scholar
Dias, E.O. & Miranda, J.A. 2013 Taper-induced control of viscous fingering in variable-gap Hele-Shaw flows. Phys. Rev. E 87 (5), 053015.CrossRefGoogle ScholarPubMed
Escher, J. & Simonett, G. 1996 On Hele-Shaw models with surface tension. Math. Res. Lett. 3 (4), 467474.CrossRefGoogle Scholar
Escher, J. & Simonett, G. 1997 Classical solutions for Hele-Shaw models with surface tension. Adv. Differ. Equ. 2 (4), 619642.Google Scholar
Fast, P., Kondic, L., Shelley, M.J. & Palffy-Muhoray, P. 2001 Pattern formation in non-Newtonian Hele-Shaw flow. Phys. Fluids 13 (5), 11911212.CrossRefGoogle Scholar
Feng, H., Barua, A., Li, S. & Li, X. 2014 A parallel adaptive treecode algorithm for evolution of elastically stressed solids. Commun. Comput. Phys. 15 (2), 365387.CrossRefGoogle Scholar
Gin, C. & Daripa, P. 2015 Stability results for multi-layer radial Hele-Shaw and porous media flows. Phys. Fluids 27 (1), 012101.CrossRefGoogle Scholar
Gin, C. & Daripa, P. 2021 Stability results on radial porous media and Hele-Shaw flows with variable viscosity between two moving interfaces. IMA J. Appl. Maths 86 (2), 294319.CrossRefGoogle Scholar
Green, C.C., Lustri, C.J. & McCue, S.W. 2017 The effect of surface tension on steadily translating bubbles in an unbounded Hele-Shaw cell. Proc. R. Soc. A 473 (2201), 20170050.CrossRefGoogle Scholar
Greenbaum, A., Greengard, L. & McFadden, G.B. 1993 Laplace's equation and Dirichlet–Neumann map in multiply connected domains. J. Comput. Phys. 105 (2), 267278.CrossRefGoogle Scholar
Greengard, L. & Rokhlin, V. 1987 A fast algorithm for particle simulations. J. Comput. Phys. 73 (2), 325348.CrossRefGoogle Scholar
Hashimoto, M., Garstecki, P., Stone, H.A. & Whitesides, G.M. 2008 Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft Matt. 4 (7), 14031413.CrossRefGoogle Scholar
Hornof, V. & Baig, F.U. 1995 Influence of interfacial reaction and mobility ratio on the displacement of oil in a Hele-Shaw cell. Exp. Fluids 18 (6), 448453.CrossRefGoogle Scholar
Hou, T.Y., Lowengrub, J.S. & Shelley, M.J. 1994 Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114 (2), 312338.CrossRefGoogle Scholar
Jou, H.-J., Leo, P.H. & Lowengrub, J.S. 1997 Microsructural evolution in inhomogeneous elastic media. J. Comput. Phys. 131, 109148.CrossRefGoogle Scholar
Kelly, E.D. & Hinch, E.J. 1997 Numerical simulations of sink flow in the Hele-Shaw cell with small surface tension. Eur. J. Appl. Maths 8 (6), 533550.CrossRefGoogle Scholar
Kondic, L., Palffy-Muhoray, P. & Shelley, M.J. 1996 Models of non-Newtonian Hele-Shaw flow. Phys. Rev. E 54 (5), R4536.CrossRefGoogle ScholarPubMed
Kress, R. 2014 Linear integral equations. 3rd edn, Applied Mathematical Sciences, vol. 82. Springer.CrossRefGoogle Scholar
Li, S., Lowengrub, J.S., Fontana, J. & Palffy-Muhoray, P. 2009 Control of viscous fingering patterns in a radial Hele-Shaw cell. Phys. Rev. Lett. 102 (17), 174501.CrossRefGoogle Scholar
Li, S., Lowengrub, J.S. & Leo, P.H. 2007 A rescaling scheme with application to the long-time simulation of viscous fingering in a Hele-Shaw cell. J. Comput. Phys. 225 (1), 554567.CrossRefGoogle Scholar
Lindsay, K. & Krasny, R. 2001 A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172 (2), 879907.CrossRefGoogle Scholar
Logvinov, O.A. 2019 Immiscible viscous fingering in an annular Hele-Shaw cell with a source. J. Porous Media 22 (1), 119130.CrossRefGoogle Scholar
Lu, M.J., Hao, W., Liu, C., Lowengrub, J.L. & Li, S. 2022 Nonlinear simulation of vascular tumor growth with chemotaxis and the control of necrosis. J. Comput. Phys. 459, 111153.CrossRefGoogle Scholar
Miranda, J.A. & Widom, M. 2000 Parallel flow in Hele-Shaw cells with ferrofluids. Phys. Rev. E 61 (2), 2114.CrossRefGoogle ScholarPubMed
Moffatt, H.K., Guest, H. & Huppert, H.E. 2021 Spreading or contraction of viscous drops between plates: single, multiple or annular drops. J. Fluid Mech. 925, A26.CrossRefGoogle Scholar
Morrow, L.C., De Cock, N. & McCue, S.W. 2023 Viscous fingering patterns for Hele-Shaw flow in a doubly connected geometry driven by a pressure differential or rotation. Phys. Rev. Fluids 8 (1), 014001.CrossRefGoogle Scholar
Morrow, L.C., Moroney, T.J. & McCue, S.W. 2019 Numerical investigation of controlling interfacial instabilities in non-standard Hele-Shaw configurations. J. Fluid Mech. 877, 10631097.CrossRefGoogle Scholar
Nase, J., Derks, D. & Lindner, A. 2011 Dynamic evolution of fingering patterns in a lifted Hele-Shaw cell. Phys. Fluids 23 (12), 123101.CrossRefGoogle Scholar
Paterson, L. 1981 Radial fingering in a Hele-Shaw cell. J. Fluid Mech. 113, 513529.CrossRefGoogle Scholar
Prokert, G. 1998 Existence results for Hele-Shaw flow driven by surface tension. Eur. J. Appl. Maths 9 (2), 195221.CrossRefGoogle Scholar
Richardson, S. 1996 Hele-Shaw flows with time-dependent free boundaries involving a concentric annulus. Phil. Trans. R. Soc. A 354 (1718), 25132553.Google Scholar
Saad, Y. & Schultz, M. 1986 GMRES: a generalized minimum residual method for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7, 856869.CrossRefGoogle Scholar
Saffman, P.G. & Taylor, G.I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312329.Google Scholar
She, Y., Aoki, H., Wang, W., Li, Z., Nasir, M., Mahardika, M.A., Patmonoaji, A., Matsushita, S. & Suekane, T. 2022 Spontaneous deformation of oil clusters induced by dual surfactants for oil recovery: dynamic study from Hele-Shaw cell to wettability-altered micromodel. Energy Fuels 36 (11), 57625774.CrossRefGoogle Scholar
Sidi, A. & Israeli, M. 1988 Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J. Sci. Comput. 3, 201231.CrossRefGoogle Scholar
Tanveer, S. & Xie, X. 2003 Analyticity and nonexistence of classical steady Hele-Shaw fingers. Commun. Pure Appl. Maths 56 (3), 353402.CrossRefGoogle Scholar
Taylor, G.I. & Saffman, P.G. 1959 A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Q. J. Mech. Appl. Maths 12 (3), 265279.CrossRefGoogle Scholar
Tian, F.R. & Nie, Q. 1998 Singularities in Hele-Shaw flows. SIAM J. Appl. Maths 58 (1), 3454.CrossRefGoogle Scholar
Trefethen, L.N. & Weideman, J.A.C. 2014 The exponentially convergent trapezoidal rule. SIAM Rev. 56 (3), 385458.CrossRefGoogle Scholar
Xie, X. & Tanveer, S. 2003 Rigorous results in steady finger selection in viscous fingering. Arch. Ration. Mech. Anal. 166 (3), 219286.CrossRefGoogle Scholar
Zhao, M., Anjos, P.H.A., Lowengrub, J.S. & Li, S. 2020 Pattern formation of the three-layer Saffman–Taylor problem in a radial Hele-Shaw cell. Phys. Rev. Fluids 5 (12), 124005.CrossRefGoogle Scholar
Zhao, M., Anjos, P.H.A., Lowengrub, J.S., Ying, W. & Li, S. 2023 Numerical study on viscous fingering using electric fields in a Hele-Shaw cell. Commun. Comput. Phys. 33 (2), 399.CrossRefGoogle Scholar
Zhao, M., Li, X., Ying, W., Belmonte, A., Lowengrub, J.S. & Li, S. 2018 Computation of a shrinking interface in a Hele-Shaw cell. SIAM J. Sci. Comput. 40 (4), B1206B1228.CrossRefGoogle Scholar
Zhao, M., Niroobakhsh, Z., Lowengrub, J.S. & Li, S. 2021 Nonlinear limiting dynamics of a shrinking interface in a Hele-Shaw cell. J. Fluid Mech. 910, A41.CrossRefGoogle Scholar
Zhao, M., Ying, W., Lowengrub, J.S. & Li, S. 2017 An efficient adaptive rescaling scheme for computing moving interface problems. Commun. Comput. Phys. 21 (3), 679691.CrossRefGoogle Scholar