Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-gsnzm Total loading time: 0.391 Render date: 2022-09-30T22:14:40.877Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface

Published online by Cambridge University Press:  07 September 2015

E. Q. Li
Affiliation:
Division of Physical Sciences and Engineering and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
S. T. Thoroddsen*
Affiliation:
Division of Physical Sciences and Engineering and Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
*
Email address for correspondence: sigurdur.thoroddsen@kaust.edu.sa

Abstract

When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large enough to compress the air. Herein we use high-speed interferometry, with 200 ns time-resolution, to directly observe the thickness evolution of the air layer during the entire bubble entrapment process. The initial disc radius and thickness shows excellent agreement with available theoretical models, based on adiabatic compression. For the largest impact velocities the air is compressed by as much as a factor of 14. Immediately following the contact, the air disc shows rapid vertical expansion. The radial speed of the surface minima just before contact, can reach 50 times the impact velocity of the drop.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bouwhuis, W., van der Veen, R. C. A., Tran, T., Keij, D. L., Winkels, K. G., Peters, I. R., van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109, 264501.CrossRefGoogle ScholarPubMed
Chandra, S. & Avedisian, C. T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.CrossRefGoogle Scholar
Crooks, J., Marsh, B., Turchetta, R., Taylor, K., Chan, W., Lahav, A. & Fenigstein, A. 2013 Kirana: a solid-state megapixel uCMOS image sensor for ultrahigh speed imaging. Proc. SPIE 8659, 865903.CrossRefGoogle Scholar
Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.CrossRefGoogle ScholarPubMed
Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2010 Thin film formation during splashing of viscous liquids. Phys. Rev. E 82, 036302.CrossRefGoogle ScholarPubMed
Duchemin, L. & Josserand, C. 2011 Curvature singularity and film-skating during drop impact. Phys. Fluids 23, 091701.CrossRefGoogle Scholar
Hicks, P. D., Ermanyuk, E. V., Gavrilov, N. V. & Purvis, R. 2012 Air trapping at impact of a rigid sphere onto a liquid. J. Fluid Mech. 695, 310320.CrossRefGoogle Scholar
Hicks, P. D. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.CrossRefGoogle Scholar
Hicks, P. D. & Purvis, R. 2013 Liquid-solid impacts with compressible gas cushioning. J. Fluid Mech. 735, 120149.CrossRefGoogle Scholar
Klaseboer, E., Manica, R. & Chan, D. Y. C. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113, 194501.CrossRefGoogle ScholarPubMed
Kolinski, J. M., Mahadevan, L. & Rubinstein, S. M. 2014 Drops can bounce from perfectly hydrophilic surfaces. Eur. Phys. Lett. 108, 24001.CrossRefGoogle Scholar
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.CrossRefGoogle ScholarPubMed
Korobkin, A. A., Ellis, A. S. & Smith, F. T. 2008 Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611, 365394.CrossRefGoogle Scholar
Latka, A., Strandburg-Peshkin, A., Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2012 Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys. Rev. Lett. 109, 054501.CrossRefGoogle ScholarPubMed
Lee, J. S., Weon, B. M., Je, J. H. & Fezzaa, K. 2012 How does an air film evolve into a bubble during drop impact? Phys. Rev. Lett. 109, 204501.CrossRefGoogle ScholarPubMed
Liu, Y., Tan, P. & Xu, L. 2013 Compressible air entrapment in high-speed drop impacts on solid surfaces. J. Fluid Mech. 716, R9.CrossRefGoogle Scholar
Mandre, S. & Brenner, M. P. 2012 The mechanism of a splash on a dry solid surface. J. Fluid. Mech. 690, 148172.CrossRefGoogle Scholar
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102, 134502.CrossRefGoogle ScholarPubMed
Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.CrossRefGoogle Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Contact time of a bouncing drop. Nature 417, 811.CrossRefGoogle ScholarPubMed
de Ruiter, J., Lagraauw, R., van den Ende, D & Mugele, F. 2014 Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11, 4853.CrossRefGoogle Scholar
de Ruiter, J., Oh, J. M., van den Ende, D. & Mugele, F. 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108, 074505.CrossRefGoogle ScholarPubMed
Smith, F. T., Li, L. & Wu, G. X. 2003 Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482, 291318.CrossRefGoogle Scholar
Thoraval, M. -J., Takehara, K., Etoh, T. G. & Thoroddsen, S. T. 2013 Drop impact entrapment of bubble rings. J. Fluid Mech. 724, 234258.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, N. & Hatsuki, Y. 2005 The air-bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.CrossRefGoogle Scholar
Thoroddsen, S. T. & Sakakibara, J. 1998 Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10, 13591373.CrossRefGoogle Scholar
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2010 Bubble entrapment through topological change. Phys. Fluids 22, 051701.CrossRefGoogle Scholar
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2012 Micro-splashing by drop impacts. J. Fluid Mech. 706, 560570.CrossRefGoogle Scholar
Van Dam, D. B. & Le Clerc, C. 2004 Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16, 34033414.CrossRefGoogle Scholar
van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85, 026315.CrossRefGoogle ScholarPubMed
Wang, A.-B., Kuan, C.-C. & Tsai, P.-H. 2013 Do we understand the bubble formation by a single drop impacting upon liquid surface? Phys. Fluids 25, 101702.CrossRefGoogle Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.CrossRefGoogle ScholarPubMed

Li and Thoroddsen supplementary movie

Shape of air-disc after contact for conditions in Figure 3(c).

Download Li and Thoroddsen supplementary movie(Video)
Video 694 KB

Li and Thoroddsen supplementary movie

Interference fringes corresponding to Figure 3(d,e).

Download Li and Thoroddsen supplementary movie(Video)
Video 9 MB

Li and Thoroddsen supplementary movie

Interference fringes corresponding to Figure 3f.

Download Li and Thoroddsen supplementary movie(Video)
Video 10 MB
63
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *