Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-08-10T05:12:58.781Z Has data issue: false hasContentIssue false

Transient growth and nonlinear breakdown of wavelet-based resolvent modes in turbulent channel flow

Published online by Cambridge University Press:  30 July 2025

Eric Ballouz*
Affiliation:
Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
Scott T.M. Dawson
Affiliation:
Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
Hyunji Jane Bae
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
*
Corresponding author: Eric Ballouz, eballouz@stanford.edu

Abstract

In this work, we study the effectiveness of the time-localised principal resolvent forcing mode at actuating the near wall cycle of turbulence. This mode is restricted to a wavelet pulse and computed from a singular value decomposition of the windowed wavelet-based resolvent operator (Ballouz et al. 2024b, J. Fluid Mech. vol. 999, A53) such that it produces the largest amplification via the linearised Navier–Stokes equations. We then inject this time-localised mode into the turbulent minimal flow unit at different intensities, and measure the deviation of the system’s response from the optimal resolvent response mode. Using the most energetic spatial wavenumbers for the minimal flow unit – i.e. constant in the streamwise direction and once-periodic in the spanwise direction – the forcing mode takes the shape of streamwise rolls and produces a response mode in the form of streamwise streaks that transiently grow and decay. Though other works such as Bae et al. (2021 J. Fluid Mech. vol. 914, A3) demonstrate the importance of principal resolvent forcing modes to buffer layer turbulence, none instantaneously track their time-dependent interaction with the turbulence, which is made possible by their formulation in a wavelet basis. For initial times and close to the wall, the turbulent minimal flow unit matches the principal response mode well, but due to nonlinear effects, the response across all forcing intensities decays prematurely with a higher forcing intensity leading to faster energy decay. Nevertheless, the principal resolvent forcing mode does lead to significant energy amplification and is more effective than a randomly generated forcing structure and the second suboptimal resolvent forcing mode at amplifying the near-wall streaks. We compute the nonlinear energy transfer to secondary modes and observe that the breakdown of the actuated mode proceeds similarly across all forcing intensities: in the near-wall region, the induced streak forks into a structure twice-periodic in the spanwise direction; in the outer region, the streak breaks up into a structure that is once-periodic in the streamwise direction. In both regions, spanwise oscillations account for the dominant share of nonlinear energy transfer.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301 1–16.10.1063/1.2717527CrossRefGoogle Scholar
del ÁLAMO, J.C. & JIMÉNEZ, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.10.1017/S0022112006000607CrossRefGoogle Scholar
Bae, H.J., Lozano-Durán, A., Bose, S.T. & Moin, P. 2019 Dynamic slip wall model for large-Eddy simulation. J. Fluid Mech. 859, 400432.10.1017/jfm.2018.838CrossRefGoogle ScholarPubMed
Bae, H.J., Lozano-Durán, A., Bose, S.T. & Moin, P. 2018 Turbulence intensities in large-Eddy simulation of wall-bounded flows. Phys. Rev. Fluids 3 (1), 014610.10.1103/PhysRevFluids.3.014610CrossRefGoogle ScholarPubMed
Bae, H.J., Lozano-Durán, A. & McKeon, B.J. 2021 Nonlinear mechanism of the self-sustaining process in the buffer and logarithmic layer of wall-bounded flows. J. Fluid Mech. 914, A3.10.1017/jfm.2020.857CrossRefGoogle Scholar
Bakewell, H.P. & Lumley, J.L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10 (9), 18801889.10.1063/1.1762382CrossRefGoogle Scholar
Ballouz, E., Dawson, S.T.M. & Bae, H.J. 2024 a Transient growth of wavelet-based resolvent modes in the buffer layer of wall-bounded turbulence, J. Phys.: Conf. Ser. 2753, 012002.Google Scholar
Ballouz, E., Lopez-Doriga, B., Dawson, S.T. & Bae, H.J. 2023 Wavelet-based resolvent analysis for statistically-stationary and temporally-evolving flows. In AIAA SCITECH. 2023 Forum, pp. 0676. American Institute of Aeronautics and Astronautics.10.2514/6.2023-0676CrossRefGoogle Scholar
Ballouz, E., Lopez-Doriga, B., Dawson, S.T.M. & Bae, H.J. 2024 b Wavelet-based resolvent analysis of non-stationary flows. J. Fluid Mech. 999, A53.10.1017/jfm.2024.903CrossRefGoogle Scholar
Blackwelder, R.F. & Eckelmann, H. 1979 Streamwise vortices associated with the bursting phenomenon. J. Fluid Mech. 94 (3), 577594.10.1017/S0022112079001191CrossRefGoogle Scholar
Butler, K.M. & Farrell, B.F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A 5 (3), 774777.10.1063/1.858663CrossRefGoogle Scholar
Chernyshenko, S.I. & Baig, M.F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.10.1017/S0022112005006506CrossRefGoogle Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.10.1017/jfm.2018.643CrossRefGoogle Scholar
Daubechies, I. 1992 Ten Lectures On Wavelets. SIAM.10.1137/1.9781611970104CrossRefGoogle Scholar
Ding, J., Chung, D. & Illingworth, S.J. 2025 Mode-to-mode nonlinear energy transfer in turbulent channel flows. J. Fluid Mech. 1002, A42.10.1017/jfm.2024.1193CrossRefGoogle Scholar
Elnahhas, A., Lenz, E., Moin, P., Lozano-Durán, A. & Bae, H.J. 2024 Are the dynamics of wall turbulence in minimal channels and larger domain channels equivalent? A graph-theoretic approach. J. Phys.: Conf. Ser. 2753 (1), 012004.Google Scholar
Encinar, M.P. & Jiménez, J. 2020 Momentum transfer by linearised eddies in turbulent channel flows. J. Fluid Mech. 895, A23.10.1017/jfm.2020.302CrossRefGoogle Scholar
Farrell, B.F., Gayme, D.F. & Ioannou, P.J. 2017 A statistical state dynamics approach to wall turbulence. Phil. Trans. R. Soc. A 375 (2089), 20160081.10.1098/rsta.2016.0081CrossRefGoogle ScholarPubMed
Gayme, D.F. & Minnick, B.A. 2019 Coherent structure-based approach to modeling wall turbulence. Phys. Rev. Fluids 4 (11), 110505.10.1103/PhysRevFluids.4.110505CrossRefGoogle Scholar
Hamilton, J.M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.10.1017/S0022112095000978CrossRefGoogle Scholar
Heide, A.L. & Hemati, M.S. 2023 An optimization framework for analyzing nonlinear stability due to sparse finite-amplitude perturbations. In AIAA AVIATION. 2023 Forum, pp. 4258. American Institute of Aeronautics and Astronautics.10.2514/6.2023-4258CrossRefGoogle Scholar
Huang, Y., Toedtli, S.S., Chini, G.P. & McKeon, B.J. 2023 Spatio-temporal characterization of non-linear forcing in turbulence. arXiv: Arxiv:2305.00095.Google Scholar
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105 (4), 044505.10.1103/PhysRevLett.105.044505CrossRefGoogle Scholar
Jeun, J., Nichols, J.W. & Jovanović, M.R. 2016 Input–output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.10.1063/1.4946886CrossRefGoogle Scholar
Jiménez, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25 (11), 110814.10.1063/1.4819081CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.10.1017/jfm.2018.144CrossRefGoogle Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.10.1017/S0022112091002033CrossRefGoogle Scholar
Johansson, A.V., Her, J.-Y. & Haritonidis, J.H. 1987 On the generation of high-amplitude wall-pressure peaks in turbulent boundary layers and spots. J. Fluid Mech. 175, 119142.10.1017/S0022112087000326CrossRefGoogle Scholar
Kerswell, R.R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50 (1), 319345.10.1146/annurev-fluid-122316-045042CrossRefGoogle Scholar
Kim, H.T., Kline, S.J. & Reynolds, W.C. 1971 The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50 (1), 133160.10.1017/S0022112071002490CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59 (2), 308323.10.1016/0021-9991(85)90148-2CrossRefGoogle Scholar
Klebanoff, P.S., Tidstrom, K.D. & Sargent, L.M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12 (1), 134.10.1017/S0022112062000014CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.10.1017/S0022112067001740CrossRefGoogle Scholar
Kojima, Y., Yeh, C., Taira, K. & Kameda, M. 2020 Resolvent analysis on the origin of two-dimensional transonic buffet. J. Fluid Mech. 885, R1.10.1017/jfm.2019.992CrossRefGoogle Scholar
Landahl, M.T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.10.1017/S0022112080000122CrossRefGoogle Scholar
Lin, C.-T., Tsai, M.-L. & Tsai, H.-C. 2023 Flow control of a plunging cylinder based on resolvent analysis. J. Fluid Mech. 967, A41.10.1017/jfm.2023.526CrossRefGoogle Scholar
Liu, Q., Sun, Y., Yeh, C.-A., Ukeiley, L.S., Cattafesta, L.N. III & Taira, K. 2021 Unsteady control of supersonic turbulent cavity flow based on resolvent analysis. J. Fluid Mech. 925, A5.10.1017/jfm.2021.652CrossRefGoogle Scholar
López-Doriga, B., Ballouz, E., Bae, H.J. & Dawson, S.T.M. 2023 A sparsity-promoting resolvent analysis for the identification of spatiotemporally-localized amplification mechanisms. In AIAA SCITECH. 2023 Forum, pp. 0677. American Institute of Aeronautics and Astronautics.10.2514/6.2023-0677CrossRefGoogle Scholar
López-Doriga, B., Ballouz, E., Bae, H.J. & Dawson, S.T.M. 2024 Sparse space–time resolvent analysis for statistically stationary and time-varying flows. J. Fluid Mech. 999, A87.10.1017/jfm.2024.955CrossRefGoogle Scholar
Lozano-Durán, A. & Bae, H.J. 2016 Turbulent channel with slip boundaries as a benchmark for subgrid-scale models in les. Annu. Res. Briefs 2016, 97103.Google ScholarPubMed
Lozano-Durán, A., Constantinou, N.C., Nikolaidis, M.-A. & Karp, M. 2021 Cause-and-effect of linear mechanisms sustaining wall turbulence. J. Fluid Mech. 914, A8.10.1017/jfm.2020.902CrossRefGoogle Scholar
Mallat, S. 1999 A Wavelet Tour of Signal Processing. Elsevier.Google Scholar
Markeviciute, V.K. & Kerswell, R.R. 2024 Threshold transient growth as a criterion for turbulent mean profiles. J. Fluid Mech. 996, A32.10.1017/jfm.2024.671CrossRefGoogle Scholar
McKeon, B.J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.10.1017/jfm.2017.115CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.10.1017/S002211201000176XCrossRefGoogle Scholar
Moarref, R., Sharma, A.S., Tropp, J.A. & McKeon, B.J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.10.1017/jfm.2013.457CrossRefGoogle Scholar
Morra, P., Nogueira, P.A.S., Cavalieri, A.V.G. & Henningson, D.S. 2021 The colour of forcing statistics in resolvent analyses of turbulent channel flows. J. Fluid Mech. 907, A24.10.1017/jfm.2020.802CrossRefGoogle Scholar
Morra, P., Semeraro, O., Henningson, D.S. & Cossu, C. 2019 On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech. 867, 969984.10.1017/jfm.2019.196CrossRefGoogle Scholar
Najmi, A.-H. 2012 Wavelets: A Concise Guide. JHU Press.10.56021/9781421404950CrossRefGoogle Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit, vol. 55. Springer Science & Business Media,10.1007/978-94-011-4281-6CrossRefGoogle Scholar
Orr, W.M.F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I. A A perfect liquid. Proc. R. Irish Acad. A 27, 968.Google Scholar
Panton, R.L. 2001 Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci. 37 (4), 341383.10.1016/S0376-0421(01)00009-4CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.10.1063/1.3068760CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.10.1146/annurev.fl.23.010191.003125CrossRefGoogle Scholar
Schmid, P.J., Henningson, D.S. & Jankowski, D.F. 2002 Stability and transition in shear flows. Appl. Mech. Rev. 55 (3), B57B59.10.1115/1.1470687CrossRefGoogle Scholar
Smith, C.R. & Metzler, S.P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.10.1017/S0022112083000634CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43 (1), 353375.10.1146/annurev-fluid-122109-160753CrossRefGoogle Scholar
Symon, S., Illingworth, S.J. & Marusic, I. 2021 Energy transfer in turbulent channel flows and implications for resolvent modelling. J. Fluid Mech. 911, A3 127.10.1017/jfm.2020.929CrossRefGoogle Scholar
Symon, S., Madhusudanan, A., Illingworth, S.J. & Marusic, I. 2023 Use of Eddy viscosity in resolvent analysis of turbulent channel flow. Phys. Rev. Fluids 8 (6), 064601.10.1103/PhysRevFluids.8.064601CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.10.7551/mitpress/3014.001.0001CrossRefGoogle Scholar
Thomas, V.L., Lieu, B.K., Jovanović, M.R., Farrell, B.F., Ioannou, P.J. & Gayme, D.F. 2014 Self-sustaining turbulence in a restricted nonlinear model of plane Couette flow. Phys. Fluids 26 (10), 105112.10.1063/1.4898159CrossRefGoogle Scholar
Toedtli, S.S., Luhar, M. & McKeon, B.J. 2019 Predicting the response of turbulent channel flow to varying-phase opposition control: resolvent analysis as a tool for flow control design. Phys. Rev. Fluids 4 (7), 073905.10.1103/PhysRevFluids.4.073905CrossRefGoogle Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.10.1063/1.869185CrossRefGoogle Scholar
Wray, A.A. 1990 Minimal storage time advancement schemes for spectral methods. Report No. MS 202. NASA Ames Research Center.Google Scholar
Yeh, C.-A. & Taira, K. 2019 Resolvent-analysis-based design of airfoil separation control. J. Fluid Mech. 867, 572610.10.1017/jfm.2019.163CrossRefGoogle Scholar
Zare, A., Jovanović, M.R. & Georgiou, T.T. 2017 Colour of turbulence. J. Fluid Mech. 812, 636680.10.1017/jfm.2016.682CrossRefGoogle Scholar