Hostname: page-component-857557d7f7-nfgnx Total loading time: 0.001 Render date: 2025-11-26T07:35:42.700Z Has data issue: false hasContentIssue false

Trapping and leakage of heavy inertial particles in an unequal strength counter-rotating vortex pair

Published online by Cambridge University Press:  26 November 2025

Zilong Zhao
Affiliation:
State Key Laboratory of Water Resources Engineering and Management, and Hydropower Research Center for Himalaya Region, Wuhan University , Wuhan 430072, PR China
Zhigang Zuo*
Affiliation:
State Key Laboratory of Hydroscience and Engineering, and Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Zhongdong Qian*
Affiliation:
State Key Laboratory of Water Resources Engineering and Management, and Hydropower Research Center for Himalaya Region, Wuhan University , Wuhan 430072, PR China
*
Corresponding authors: Zhongdong Qian, zdqian@whu.edu.cn; Zhigang Zuo, zhigang200@tsinghua.edu.cn
Corresponding authors: Zhongdong Qian, zdqian@whu.edu.cn; Zhigang Zuo, zhigang200@tsinghua.edu.cn

Abstract

The clustering of inertial particles in turbulent flows is ubiquitous in many applications. This phenomenon is attributed to the influence of multiscale vortex structures in turbulent flows on particle motion. In this study, our primary goal is to further investigate the vortex effect on particle motion. We perform analytical and numerical simulations to examine the motion of particles in a counter-rotating vortex pair (CVP) with circulation ratio $\gamma \in (-1,0)$. The small, dilute, heavy inertial particles with a low particle Reynolds number are considered. In particular, the particle Stokes number and density factor satisfy $St\in (0,0.3)$ and $ R\in (0,1)$, respectively. We validate the existence of a particle-attracting ring within the CVP, which provides a simple mechanism for particle trapping. Meanwhile, there exists a critical Stokes number $St_{{cr}}$ limiting the occurrence of particle trapping. We provide a formula to predict the value of $St_{{cr}}$, which depends on both $\gamma$ and $R$. Only when $St\lt St_{{cr}}$ can the attracting ring trap the particle initially located within its basin of attraction and eventually lead to the formation of a particle clustering ring. Particles with a larger $R$ are more likely to be trapped in the CVP. While $St\gt St_{{cr}}$, the dynamics of the particles exhibits finite-time ‘leakage’. The attracting ring in the phase space coincides with the saddle point from which particles escape. Although all particles eventually escape, some may remain trapped in the vortex core region for a duration (represented by residence time). The distribution of residence time exhibits a localised exponential-like feature, indicating transient chaos.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Angilella, J.-R. 2010 Dust trapping in vortex pairs. Physica D 239 (18), 17891797.10.1016/j.physd.2010.06.002CrossRefGoogle Scholar
Angilella, J.-R., Vilela, R.D. & Motter, A.E. 2014 Inertial particle trapping in an open vortical flow. J. Fluid Mech. 744, 183216.10.1017/jfm.2014.38CrossRefGoogle Scholar
Auton, T.R., Hunt, J.C.R. & Prud’Homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.10.1017/S0022112088003246CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.10.1146/annurev.fluid.010908.165243CrossRefGoogle Scholar
Bec, J. 2003 Fractal clustering of inertial particles in random flows. Phy. Fluids 15 (11), L81L84.10.1063/1.1612500CrossRefGoogle Scholar
Bec, J. 2005 Multifractal concentrations of inertial particles in smooth random flows. J. Fluid Mech. 528, 255277.10.1017/S0022112005003368CrossRefGoogle Scholar
Bec, J., Gustavsson, K. & Mehlig, B. 2024 Statistical models for the dynamics of heavy particles in turbulence. Annu. Rev. Fluid Mech. 56, 189213.10.1146/annurev-fluid-032822-014140CrossRefGoogle Scholar
Birnstiel, T. 2024 Dust growth and evolution in protoplanetary disks. Annu. Rev. Astron. Astrophys. 62, 157202.10.1146/annurev-astro-071221-052705CrossRefGoogle Scholar
Brandt, L.K. & Nomura, K.K. 2010 Characterization of the interactions of two unequal co-rotating vortices. J. Fluid Mech. 646, 233253.10.1017/S0022112009992849CrossRefGoogle Scholar
Brocchini, M., Marini, F., Falchi, M., Postacchini, M. & Zitti, G. 2023 Particle dynamics due to interaction between a breaking-induced vortex and a nearbed vortex. Phys. Fluids 35 (1), 015161.10.1063/5.0130625CrossRefGoogle Scholar
Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.10.1017/S002211207400190XCrossRefGoogle Scholar
Burns, T.J., Davis, R.W. & Moore, E.F. 1999 A perturbation study of particle dynamics in a plane wake flow. J. Fluid Mech. 384, 126.10.1017/S002211209900419XCrossRefGoogle Scholar
Chong, K., Kelly, S.D., Smith, S. & Eldredge, J.D. 2013 Inertial particle trapping in viscous streaming. Phys. Fluids 25 (3), 033602.10.1063/1.4795857CrossRefGoogle Scholar
Daitche, A. 2015 On the role of the history force for inertial particles in turbulence. J. Fluid Mech. 782, 567593.10.1017/jfm.2015.551CrossRefGoogle Scholar
Daitche, A. & Tél, T. 2011 Memory effects are relevant for chaotic advection of inertial particles. Phys. Rev. Lett. 107, 244501.10.1103/PhysRevLett.107.244501CrossRefGoogle ScholarPubMed
Eames, I. & Gilbertson, M.A. 2004 The settling and dispersion of small dense particles by spherical vortices. J. Fluid Mech. 498, 183203.10.1017/S0022112003006888CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.10.1016/0301-9322(94)90072-8CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.10.1007/BF00936835CrossRefGoogle Scholar
Elhmaïdi, D., Provenzale, A. & Babiano, A. 1993 Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. J. Fluid Mech. 257, 533558.10.1017/S0022112093003192CrossRefGoogle Scholar
Fessler, J.R., Kulick, J.D. & Eaton, J.K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.10.1063/1.868445CrossRefGoogle Scholar
Gibert, M., Xu, H.T. & Bodenschatz, E. 2012 Where do small, weakly inertial particles go in a turbulent flow? J. Fluid Mech. 698, 160167.10.1017/jfm.2012.72CrossRefGoogle Scholar
Grabowski, W.W. & Wang, L.P. 2013 Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45, 293324.10.1146/annurev-fluid-011212-140750CrossRefGoogle Scholar
Grebogi, C., Ott, E. & Yorke, J.A. 1983 Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7 (1), 181200.10.1016/0167-2789(83)90126-4CrossRefGoogle Scholar
Guha, A. 2008 Transport and deposition of particles in turbulent and laminar flow. Annu. Rev. Fluid Mech. 40, 311341.10.1146/annurev.fluid.40.111406.102220CrossRefGoogle Scholar
Harris, D.M. & Williamson, C.H.K. 2012 Instability of secondary vortices generated by a vortex pair in ground effect. J. Fluid Mech. 700, 148186.10.1017/jfm.2012.108CrossRefGoogle Scholar
IJzermans, R.H.A. & Hagmeijer, R. 2006 Accumulation of heavy particles in N-vortex flow on a disk. Phys. Fluids 18 (6), 063601.10.1063/1.2212987CrossRefGoogle Scholar
IJzermans, R.H.A., Hagmeijer, R. & van Langen, P.J. 2007 Accumulation of heavy particles around a helical vortex filament. Phys. Fluids 19 (10), 107102.10.1063/1.2771658CrossRefGoogle Scholar
Johansen, A., Low, M.M., Lacerda, P. & Bizzarro, M. 2015 Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1 (3), e1500109.10.1126/sciadv.1500109CrossRefGoogle ScholarPubMed
Johnson, R.S. 2005 Singular Perturbation Theory. Springer.Google Scholar
Kapoor, S., Jaganathan, D. & Govindarajan, R. 2024 Trapping and extreme clustering of finitely dense inertial particles near a rotating vortex pair. J. Fluid Mech. 996, A44.10.1017/jfm.2024.706CrossRefGoogle Scholar
Kasbaoui, M.H., Koch, D.L. & Desjardins, O. 2019 Clustering in Euler–Euler and Euler–Lagrange simulations of unbounded homogeneous particle-laden shear. J. Fluid Mech. 859, 174203.10.1017/jfm.2018.796CrossRefGoogle Scholar
Kiger, K.T. & Lasheras, J.C. 1995 The effect of vortex pairing on particle dispersion and kinetic energy transfer in a two-phase turbulent shear layer. J. Fluid Mech. 302, 149178.10.1017/S0022112095004058CrossRefGoogle Scholar
Ku, X., Li, H., Lin, J. & Jin, H. 2019 Accumulation of heavy particles in circular bounded vortex flows induced by two small rotating cylinders. Intl J. Multiphase Flow 113, 7188.10.1016/j.ijmultiphaseflow.2019.01.006CrossRefGoogle Scholar
Ku, X., Lin, J., van Sint Annaland, M. & Hagmeijer, R. 2016 Numerical simulation of the accumulation of heavy particles in a circular bounded vortex flow. Intl J. Multiphase Flow 87, 8089.10.1016/j.ijmultiphaseflow.2016.06.008CrossRefGoogle Scholar
Lasheras, J.C. & Tio, K.K. 1994 Dynamics of a small spherical particle in steady two-dimensional vortex flows. Appl. Mech. Rev. 47 (6S), S61S69.10.1115/1.3124442CrossRefGoogle Scholar
Lee, H., Baik, J.J. & Han, J.Y. 2015 Effects of turbulence on warm clouds and precipitation with various aerosol concentrations. Atmos. Res. 153, 1933.10.1016/j.atmosres.2014.07.026CrossRefGoogle Scholar
Legras, B., Dritschel, D.G. & Caillol, P. 2001 The erosion of a distributed two-dimensional vortex in a background straining flow. J. Fluid Mech. 441, 369398.10.1017/S002211200100502XCrossRefGoogle Scholar
Leweke, T., Le Dizès, S. & Williamson, C.H.K. 2016 Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48, 507541.10.1146/annurev-fluid-122414-034558CrossRefGoogle Scholar
Marcu, B., Meiburg, E. & Newton, P.K. 1995 Dynamics of heavy particles in a Burgers vortex. Phys. Fluids 7 (2), 400410.10.1063/1.868778CrossRefGoogle Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle–laden turbulent flows. Annu. Rev. Condens. Matt. Phys. 11, 529559.10.1146/annurev-conmatphys-031119-050637CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.10.1017/S0022112087000193CrossRefGoogle Scholar
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.10.1063/1.864230CrossRefGoogle Scholar
Moffatt, H.K., Kida, S. & Ohkitani, K. 1994 Stretched vortices – the sinews of turbulence; large-Reynolds-number asymptotics. J. Fluid Mech. 259, 241264.10.1017/S002211209400011XCrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.10.1016/j.ijmultiphaseflow.2011.12.001CrossRefGoogle Scholar
Nath, A.V.S. & Roy, A. 2024 Clustering and chaotic motion of heavy inertial particles in an isolated non-axisymmetric vortex. J. Fluid Mech. 998, A62.10.1017/jfm.2024.831CrossRefGoogle Scholar
Nath, A.V.S., Roy, A. & Kasbaoui, M.H. 2025 Instability of a dusty shear flow. J. Fluid Mech. 1002, A17.10.1017/jfm.2024.1142CrossRefGoogle Scholar
Nath, A.V.S., Roy, A., Ravichandran, S. & Govindarajan, R. 2024 Irregular dependence on Stokes number, and nonergodic transport, of heavy inertial particles in steady laminar flows. Phys. Rev. Fluids 9, 014302.10.1103/PhysRevFluids.9.014302CrossRefGoogle Scholar
Nizkaya, T., Angilella, J.R. & Buès, M. 2010 Note on dust trapping in point vortex pairs with unequal strengths. Phys. Fluids 22 (11), 113301.10.1063/1.3505022CrossRefGoogle Scholar
Pandey, V., Perlekar, P. & Mitra, D. 2019 Clustering and energy spectra in two-dimensional dusty gas turbulence. Phys. Rev. E 100, 013114.10.1103/PhysRevE.100.013114CrossRefGoogle ScholarPubMed
Park, J. & Park, H. 2021 Particle dispersion induced by vortical interactions in a particle-laden upward jet with a partial crossflow. J. Fluid Mech. 915, A5.10.1017/jfm.2021.19CrossRefGoogle Scholar
Poydenot, F. & Andreotti, B. 2024 Pathways from nucleation to raindrops. Phys. Rev. Fluids 9, 123602.10.1103/PhysRevFluids.9.123602CrossRefGoogle Scholar
Prevel, M., Vinkovic, I., Doppler, D., Pera, C. & Buffat, M. 2013 Direct numerical simulation of particle transport by hairpin vortices in a laminar boundary layer. Intl J. Heat Fluid Flow 43, 214.10.1016/j.ijheatfluidflow.2013.03.015CrossRefGoogle Scholar
Raju, N. & Meiburg, E. 1997 Dynamics of small, spherical particles in vortical and stagnation point flow fields. Phys. Fluids 9 (2), 299314.10.1063/1.869150CrossRefGoogle Scholar
Ravichandran, S., Perlekar, P. & Govindarajan, R. 2014 Attracting fixed points for heavy particles in the vicinity of a vortex pair. Phys. Fluids 26 (1), 013303.10.1063/1.4861395CrossRefGoogle Scholar
Sapsis, T. & Haller, G. 2010 Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows. Chaos 20 (1), 017515.10.1063/1.3272711CrossRefGoogle ScholarPubMed
Shuai, S., Jeswin Dhas, D., Roy, A. & Kasbaoui, M.H. 2022 Instability of a dusty vortex. J Fluid Mech. 948, A56.10.1017/jfm.2022.687CrossRefGoogle Scholar
Shuai, S. & Kasbaoui, M.H. 2022 Accelerated decay of a Lamb–Oseen vortex tube laden with inertial particles in Eulerian–Lagrangian simulations. J. Fluid Mech. 936, A8.10.1017/jfm.2022.50CrossRefGoogle Scholar
Shuai, S., Roy, A. & Kasbaoui, M.H. 2024 The merger of co-rotating vortices in dusty flows. J. Fluid Mech. 981, A27.10.1017/jfm.2024.67CrossRefGoogle Scholar
Sinai, Y.A.G. 1976 Introduction to Ergodic Theory. Princeton University Press.Google Scholar
Stokes, G.G. 2009 On the effect of the internal friction of fluids on the motion of pendulums, Cambridge Library Collection – Mathematics, vol. 3. Cambridge University Press.10.1017/CBO9780511702266.002CrossRefGoogle Scholar
Tél, T. 2015 The joy of transient chaos. Chaos 25 (9), 097619.10.1063/1.4917287CrossRefGoogle ScholarPubMed
Tio, K.-K., Gañán-Calvo, A.M. & Lasheras, J.C. 1993 a The dynamics of small, heavy, rigid spherical particles in a periodic Stuart vortex flow. Phys. Fluids A 5 (7), 16791693.10.1063/1.858845CrossRefGoogle Scholar
Tio, K.-K., Liñán, A., Lasheras, J.C. & Gañán-Calvo, A.M. 1993 b On the dynamics of buoyant and heavy particles in a periodic Stuart vortex flow. J. Fluid Mech. 254, 671699.10.1017/S0022112093002307CrossRefGoogle Scholar
Varaksin, A.Y. & Ryzhkov, S.V. 2022 Vortex flows with particles and droplets (a review). Symmetry 14 (10), 2016.10.3390/sym14102016CrossRefGoogle Scholar
Wen, F., Kamalu, N., Chung, J.N., Crowe, C.T. & Troutt, T.R. 1992 Particle dispersion by vortex structures in plane mixing layers. J. Fluids Engng 114 (4), 657666.10.1115/1.2910082CrossRefGoogle Scholar
Wilkinson, M., Mehlig, B. & Bezuglyy, V. 2006 Caustic activation of rain showers. Phys. Rev. Lett. 97, 048501.10.1103/PhysRevLett.97.048501CrossRefGoogle ScholarPubMed
Zhao, Z., Guo, Z., Zuo, Z. & Qian, Z. 2024 Trapping of inertial particles in a two-dimensional unequal-strength counterrotating vortex pair flow. Phys. Rev. Fluids 9, 024307.10.1103/PhysRevFluids.9.024307CrossRefGoogle Scholar