Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T15:51:46.841Z Has data issue: false hasContentIssue false

Turbulence in a box: quantification of large-scale resolution effects in isotropic turbulence free decay

Published online by Cambridge University Press:  05 April 2017

M. Meldi*
Affiliation:
Institut PPRIME, Department of Fluid Flow, Heat Transfer and Combustion, CNRS – ENSMA – Université de Poitiers, UPR 3346, SP2MI – Téléport, 211 Bd. Marie et Pierre Curie, B.P. 30179, F86962 Futuroscope Chasseneuil CEDEX, France
P. Sagaut
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France
*
Email address for correspondence: marcello.meldi@ensma.fr

Abstract

The effects of the finiteness of the physical domain over the free decay of homogeneous isotropic turbulence are explored in the present article. Saturation at the large scales is investigated by the use of theoretical analysis and eddy-damped quasi-normal Markovian calculations. Both analyses indicate a strong sensitivity of the large-scale features of the flow to saturation and finite Reynolds number effects. This aspect plays an important role in the general lack of agreement between grid turbulence experiments and numerical simulations. On the other hand, the statistical quantities associated with the behaviour of the spectrum in the inertial region are only marginally affected by saturation. These results suggest new guidelines for the interpretation of experimental and direct numerical simulation studies.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Tang, S. L., Djenidi, L. & Danaila, L. 2015 Boundedness of the velocity derivative skewness in various turbulent flows. J. Fluid Mech. 781, 727744.CrossRefGoogle Scholar
Bos, W. J. T., Shao, L. & Bertoglio, J. P. 2007 Spectral imbalance and the normalized dissipation rate of turbulence. Phys. Fluids 19 (4), 045101.CrossRefGoogle Scholar
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.CrossRefGoogle Scholar
Davidson, P. A. 2004 Turbulence. An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Davidson, P. A. 2011 The minimum energy decay rate in quasi-isotropic grid turbulence. Phys. Fluids 23 (8), 085108.CrossRefGoogle Scholar
Djenidi, L., Kamruzzamana, Md. & Antonia, R. A. 2015 Power-law exponent in the transition period of decay in grid turbulence. J. Fluid Mech. 779, 544555.CrossRefGoogle Scholar
Eyink, G. L. & Thomson, D. J. 2000 Free decay of turbulence and breakdown of self-similarity. Phys. Fluids 12, 477479.CrossRefGoogle Scholar
George, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids A 4 (7), 14921509.CrossRefGoogle Scholar
George, W. K. 2012 Asymptotic effect on initial upstream conditions on turbulence. J. Fluids Engng 134, 061203.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J. C. 2015 Energy dissipation and flux laws for unsteady turbulence. Phys. Lett. A 379, 11441148.CrossRefGoogle Scholar
Ishida, T., Davidson, P. A. & Kaneda, Y. 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.CrossRefGoogle Scholar
Krogstad, P. Å. & Davidson, P. A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.CrossRefGoogle Scholar
Krogstad, P. Å. & Davidson, P. A. 2011 Freely-decaying, homogeneous turbulence generated by multi-scale grids. J. Fluid Mech. 680, 417434.CrossRefGoogle Scholar
Lavoie, P., Djenidi, L. & Antonia, R. A. 2007 Effects of initial conditions in decaying turbulence generated by passive grids. J. Fluid Mech. 585, 395420.CrossRefGoogle Scholar
Lesieur, M., Ossia, S. & Metais, O. 1999 Infrared pressure spectra in two- and three-dimensional isotropic incompressible turbulence. Phys. Fluids 11, 15351543.CrossRefGoogle Scholar
Meldi, M. 2016 The signature of initial production mechanisms in isotropic turbulence decay. Phys. Fluids 28, 035105.CrossRefGoogle Scholar
Meldi, M. & Sagaut, P. 2012 On non-self-similar regimes in homogeneous isotropic turbulence decay. J. Fluid Mech. 711, 364393.CrossRefGoogle Scholar
Meldi, M. & Sagaut, P. 2013a Further insights into self-similarity and self-preservation in freely decaying isotropic turbulence. J. Turbul. 14, 2453.CrossRefGoogle Scholar
Meldi, M. & Sagaut, P. 2013b Pressure statistics in self-similar freely decaying isotropic turbulence. J. Fluid Mech. 717, R2.CrossRefGoogle Scholar
Meldi, M. & Sagaut, P. 2014 An adaptive numerical method for solving EDQNM equations for the analysis of long-time decay of isotropic turbulence. J. Comput. Phys. 262, 7285.CrossRefGoogle Scholar
Mohamed, M. S. & Larue, J. C. 1990 The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195214.CrossRefGoogle Scholar
Mons, V., Chasaing, J. C., Gomez, T. & Sagaut, P. 2014 Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-normal Markovian-based data assimilation study. Phys. Fluids 26, 115105.CrossRefGoogle Scholar
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.CrossRefGoogle Scholar
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41, 363386.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Homogenous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Sinhuber, M., Bodenschatz, E. & Bewley, G. P. 2015 Decay of turbulence at high Reynolds numbers. Phys. Rev. Lett. 114, 034501.CrossRefGoogle ScholarPubMed
Skrbek, L., Niemela, J. J. & Donnelly, R. J. 2000 Four regimes of decaying grid turbulence in a finite channel. Phys. Rev. Lett. 85, 29732976.CrossRefGoogle Scholar
Skrbek, L. & Stalp, S. R. 2000 On the decay of homogeneous isotropic turbulence. Phys. Fluids 12, 19972019.CrossRefGoogle Scholar
Stalp, R. S., Skrbek, L. & Donnelly, R. J. 1999 Decay of grid turbulence in a finite channel. Phys. Rev. Lett. 82, 214503.CrossRefGoogle Scholar
Thormann, A. & Meneveau, C. 2014 Decay of homogeneous, nearly isotropic turbulence behind active fractal grids. Phys. Fluids 26, 025112.CrossRefGoogle Scholar
Thornber, B. 2016 Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer–Meshkov instability. Phys. Fluids 28, 045106.CrossRefGoogle Scholar
Valente, P. C. & Vassilicos, J. C. 2012 Universal dissipation scaling for nonequilibrium turbulence. Phys. Rev. Lett. 108, 214503.CrossRefGoogle ScholarPubMed
White, C. M., Karpetis, A. N. & Sreenivasan, K. R. 2002 High-Reynolds-number turbulence in small apparatus: grid turbulence in cryogenic liquids. J. Fluid Mech. 452, 189197.CrossRefGoogle Scholar