Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-zz2mb Total loading time: 0.348 Render date: 2021-03-09T05:11:28.959Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Viscoplastic drop impact on thin films

Published online by Cambridge University Press:  27 March 2020

Samya Sen
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Anthony G. Morales
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Randy H. Ewoldt
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Corresponding
E-mail address:

Abstract

We quantitatively test a dimensionless group (Blackwell et al., Phys. Fluids, vol. 27, 2015, 043101) for predicting the onset of splash behaviour for drop impacts of yield-stress fluids on horizontal surfaces pre-coated with the same fluid. Two classes of complex fluid are considered, with different chemistry and material microstructure: ‘gel’ suspensions of attractive hard colloidal clay particles (Laponite RD), and ‘glassy’ suspensions of crowded soft polymeric particles (Carbopol 940). High-speed imaging identifies drop impact regimes as a function of material composition, drop diameter, velocity and coating thickness. The high-dimensional parameter space collapses into the single dimensionless group, which we find successfully separates the impact results into distinct regimes. Moreover, it gives a constant critical value for the regime boundary as a function of dimensionless coating thickness, and remarkably this critical value is only a factor of 2 larger for Carbopol when compared to Laponite at several different concentrations. The results demonstrate insight that depends on macroscopic dynamic conditions and rheological properties largely independent of chemistry and material microstructure within the range of conditions studied.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Balmforth, N. J., Frigaard, I. A. & Ovarlez, G. 2014 Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121146.CrossRefGoogle Scholar
Basu, A., Xu, Y., Still, T., Arratia, P. E., Zhang, Z., Nordstrom, K. N., Rieser, J. M., Gollub, J. P., Durian, D. J. & Yodh, A. G. 2014 Rheology of soft colloids across the onset of rigidity: scaling behavior, thermal, and non-thermal responses. Soft Matt. 10, 30273035.CrossRefGoogle ScholarPubMed
Bécu, L., Manneville, S. & Colin, A. 2006 Yielding and flow in adhesive and nonadhesive concentrated emulsions. Phys. Rev. Lett. 96, 138302.CrossRefGoogle ScholarPubMed
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, vol. 1, 2nd edn. Fluid Mechanics. Wiley.Google Scholar
Blackwell, B. C.2017 When sticky fluids do and do not stick: yield-stress fluid drop impacts. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Blackwell, B. C., Deetjen, M. E., Gaudio, J. E. & Ewoldt, R. H. 2015 Sticking and splashing in yield-stress fluid drop impacts on coated surfaces. Phys. Fluids 27, 043101.CrossRefGoogle Scholar
Blackwell, B. C., Deetjen, M. E., Gaudio, J. E. & Ewoldt, R. H. 2017 Quantitative measures of yield-stress fluid drop impacts on coated surfaces. Atomiz. Sprays 27 (4), 337343.CrossRefGoogle Scholar
Blackwell, B. C., Nadhan, A. E. & Ewoldt, R. H. 2016 Impacts of yield-stress fluid drops on permeable mesh substrates. J. Non-Newtonian Fluid Mech. 238, 107114.CrossRefGoogle Scholar
Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. 2017 Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89 (3), 035005.Google Scholar
Bonn, D., Kellay, H., Tanaka, H., Wegdam, G. & Meunier, J. 1999 Laponite: what is the difference between a gel and a glass? Langmuir 15 (22), 75347536.CrossRefGoogle Scholar
Cloitre, M., Borrega, R., Monti, F. & Leibler, L. 2003 Glassy dynamics and flow properties of soft colloidal pastes. Phys. Rev. Lett. 90 (6), 068303.CrossRefGoogle ScholarPubMed
Cossali, G. E., Coghe, A. & Marengo, M. 1997 The impact of a single drop on a wetted solid surface. Exp. Fluids 22 (6), 463472.CrossRefGoogle Scholar
Coussot, P. 2014 Yield stress fluid flows: a review of experimental data. J. Non-Newtonian Fluid Mech. 211, 3149.CrossRefGoogle Scholar
Cummins, H. Z. 2007 Liquid, glass, gel: the phases of colloidal laponite. J. Non-Cryst. Solids 353, 38913905.CrossRefGoogle Scholar
Denkov, N. D., Tcholakova, S., Golemanov, K., Ananthapadmanabhan, K. P. & Lips, A. 2008 Viscous friction in foams and concentrated emulsions under steady shear. Phys. Rev. Lett. 100, 138301.CrossRefGoogle ScholarPubMed
Dinkgreve, M., Paredes, J., Denn, M. M. & Bonn, D. 2016 On different ways of measuring ‘the’ yield stress. J. Non-Newtonian Fluid Mech. 238, 233241.CrossRefGoogle Scholar
German, G. & Bertola, V. 2009 Impact of shear-thinning and yield-stress drops on solid substrates. J. Phys.: Condens. Matter 21, 375111.Google ScholarPubMed
German, G. & Bertola, V. 2010 The free-fall of viscoplastic drops. J. Non-Newtonian Fluid Mech. 165, 825828.CrossRefGoogle Scholar
Guémas, M., Marín, Á. G. & Lohse, D. 2012 Drop impact experiments of non-Newtonian liquids on micro-structured surfaces. Soft Matt. 8, 1072510731.CrossRefGoogle Scholar
Jalaal, M., Balmforth, N. J. & Stoeber, B. 2015 Slip of spreading viscoplastic droplets. Langmuir 31, 1207112075.CrossRefGoogle ScholarPubMed
Jalaal, M., Kemper, D. & Lohse, D. 2019 Viscoplastic water entry. J. Fluid Mech. 864, 596613.CrossRefGoogle Scholar
Jørgensen, L., Le Merrer, M., Delanoë-Ayari, H. & Barentin, C. 2015 Yield stress and elasticity influence on surface tension measurements. Soft Matt. 11 (25), 51115121.CrossRefGoogle ScholarPubMed
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15 (6), 16501657.CrossRefGoogle Scholar
Kalyon, D. M. 2005 Apparent slip and viscoplasticity of concentrated suspensions. J. Rheol. 49 (3), 621640.CrossRefGoogle Scholar
Louvet, N., Bonn, D. & Kellay, H. 2014 Nonuniversality in the pinch-off of yield stress fluids: role of nonlocal rheology. Phys. Rev. Lett. 113, 218302.CrossRefGoogle ScholarPubMed
Luu, L.-H. & Forterre, Y. 2009 Drop impact of yield-stress fluids. J. Fluid Mech. 632, 301327.CrossRefGoogle Scholar
Luu, L.-H. & Forterre, Y. 2013 Giant drag reduction in complex fluid drops on rough hydrophobic surfaces. Phys. Rev. Lett. 110, 184501.CrossRefGoogle ScholarPubMed
Macosko, C. W. 1994 Rheology: Principles, Measurements, and Applications. Wiley-VCH.Google Scholar
Manglik, R. M., Wasekar, V. M. & Zhang, J. 2001 Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Exp. Therm. Fluid Sci. 25 (1), 5564.Google Scholar
Mewis, J. 1979 Thixotropy – a general review. J. Non-Newtonian Fluid Mech. 6 (1), 120.CrossRefGoogle Scholar
Mewis, J. & Wagner, N. J. 2009 Thixotropy. Adv. Colloid Interface Sci. 147–148, 214227.CrossRefGoogle ScholarPubMed
Nelson, A. Z., Bras, R. E., Liu, J. & Ewoldt, R. H. 2018 Extending yield-stress fluid paradigms. J. Rheol. 62 (1), 357369.CrossRefGoogle Scholar
Nelson, A. Z. & Ewoldt, R. H. 2017 Design of yield-stress fluids: a rheology-to structure inverse problem. Soft Matt. 13, 75787594.CrossRefGoogle ScholarPubMed
Nelson, A. Z., Schweizer, K. S., Rauzan, B. M., Nuzzo, R. G., Vermant, J. & Ewoldt, R. H. 2019 Designing and transforming yield-stress fluids. Curr. Opin. Solid State Mater. Sci. 23, 100758CrossRefGoogle Scholar
Nguyen, Q. D. & Boger, D. V. 1992 Measuring the flow properties of yield stress fluids. Annu. Rev. Fluid Mech. 24, 4788.CrossRefGoogle Scholar
Nigen, S. 2005 Experimental investigation of the impact of an (apparent) yield-stress material. Atomiz. Sprays 15 (1), 103117.CrossRefGoogle Scholar
Nordstrom, K. N., Verneuil, E., Arratia, P. E., Basu, A., Zhang, Z., Yodh, A. G., Gollub, A. G. & Durian, D. J. 2010 Microfluidic rheology of soft colloids above and below jamming. Phys. Rev. Lett. 105, 175701.CrossRefGoogle ScholarPubMed
Oishi, C. M., Thompson, R. L. & Martins, F. P. 2019 Normal and oblique drop impact of yield stress fluids with thixotropic effects. J. Fluid Mech. 876, 642679.CrossRefGoogle Scholar
Paredes, J., Michels, M. A. J. & Bonn, D. 2013 Rheology across the zero-temperature jamming transition. Phys. Rev. Lett. 111, 015701.CrossRefGoogle ScholarPubMed
Pellet, C. & Cloitre, M. 2016 The glass and jamming transitions of soft polyelectrolyte microgel suspensions. Soft Matt. 12, 37103720.CrossRefGoogle ScholarPubMed
Piau, J. M. 2007 Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges meso- and macroscopic properties, constitutive equations and scaling laws. J. Non-Newtonian Fluid Mech. 144, 129.CrossRefGoogle Scholar
Preedy, E., Perni, S., Nipiĉ, D., Bohinc, K. & Prokopovich, P. 2014 Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir 30, 94669476.CrossRefGoogle ScholarPubMed
Rauzan, B. M., Nelson, A. Z., Lehman, S. E., Ewoldt, R. H. & Nuzzo, R. G. 2018 Particle-free emulsions for 3D printing elastomers. Adv. Funct. Mater. 28 (21), 1707032.Google Scholar
Rein, M. 1996 The transitional regime between coalescing and splashing drops. J. Fluid Mech. 306, 145165.CrossRefGoogle Scholar
Seth, J. R., Mohan, L., Locatelli-Champagne, C., Cloitre, M. & Bonnecaze, R. T. 2011 A micromechanical model to predict the flow of soft particle glasses. Nat. Mater. 10, 838843.CrossRefGoogle ScholarPubMed
Sivakumar, D. & Tropea, C. 2002 Splashing impact of a spray onto a liquid film. Phys. Fluids 14, L85L88.CrossRefGoogle Scholar
Souza Mendes, P. R. & Dutra, E. S. S. 2004 Viscosity function for yield-stress liquids. Appl. Rheol. 14 (6), 296302.CrossRefGoogle Scholar
Sun, A. & Gunasekaran, S. 2009 Yield stress in foods: measurements and applications. Int. J. Food Prop. 12, 70101.CrossRefGoogle Scholar
Tanaka, H., Meunier, J. & Bonn, D. 2004 Nonergodic states of charged colloidal suspensions: Repulsive and attractive glasses and gels. Phys. Rev. E 69, 031404.Google ScholarPubMed
Thompson, R. L. & Soares, E. J. 2016 Viscoplastic dimensionless numbers. J. Non-Newtonian Fluid Mech. 238, 5764.CrossRefGoogle Scholar
Truscott, T., Darbois-Texier, B., Lovett, B., Brandenbourger, M., Maquet, L., Pan, Z., Gilet, T., Strivay, D. & Dorbola, S. 2015 Unraveling expressionism. APS Division of Fluid Dynamics 68th Annual Meeting, Boston, MA.Google Scholar
Vander Wal, R., Berger, G. M. & Mozes, S. D. 2005a Droplets splashing upon films of the same fluid of various depths. Exp. Fluids 40 (1), 3352.CrossRefGoogle Scholar
Vander Wal, R., Berger, G. M. & Mozes, S. D. 2005b The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids 40 (1), 5359.Google Scholar
Wang, A.-B. & Chen, C.-C. 2000 Splashing impact of a single drop onto very thin liquid films. Phys. Fluids 12 (9), 21552158.CrossRefGoogle Scholar
Yu, A. C., Chen, H., Chan, D., Agmon, G., Stapleton, L. M., Sevit, A. M., Tibbitt, M. W., Acosta, J. D., Zhang, T., Franzia, P. W. et al. 2016 Scalable manufacturing of biomimetic moldable hydrogels for industrial applications. Proc. Natl Acad. Sci. USA 113, 1425514260.CrossRefGoogle ScholarPubMed

Sen et al. supplementary movie

Slow motion video of representative drop impact types.

Video 6 MB

Sen et al. supplementary material

Supplementary data

PDF 2 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 86
Total number of PDF views: 358 *
View data table for this chart

* Views captured on Cambridge Core between 27th March 2020 - 9th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Viscoplastic drop impact on thin films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Viscoplastic drop impact on thin films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Viscoplastic drop impact on thin films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *