Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-489z4 Total loading time: 0.361 Render date: 2022-05-21T10:42:38.519Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Vortex dynamics and new lift enhancement mechanism of wing–body interaction in insect forward flight

Published online by Cambridge University Press:  19 April 2016

Geng Liu
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
Haibo Dong*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
Chengyu Li
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
*
Email address for correspondence: haibo.dong@virginia.edu

Abstract

The effects of wing–body interaction (WBI) on aerodynamic performance and vortex dynamics have been numerically investigated in the forward flight of cicadas. Flapping wing kinematics was reconstructed based on the output of a high-speed camera system. Following the reconstruction of cicada flight, three models, wing–body (WB), body-only (BD) and wings-only (WN), were then developed and evaluated using an immersed-boundary-method-based incompressible Navier–Stokes equations solver. Results have shown that due to WBIs, the WB model had a 18.7 % increase in total lift production compared with the lift generated in both the BD and WN models, and about 65 % of this enhancement was attributed to the body. This resulted from a dramatic improvement of body lift production from 2 % to 11.6 % of the total lift produced by the wing–body system. Further analysis of the associated near-field and far-field vortex structures has shown that this lift enhancement was attributed to the formation of two distinct vortices shed from the thorax and the posterior of the insect, respectively, and their interactions with the flapping wings. Simulations are also used to examine the new lift enhancement mechanism over a range of minimum wing–body distances, reduced frequencies and body inclination angles. This work provides a new physical insight into the understanding of the body-involved lift-enhancement mechanism in insect forward flight.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aono, H., Liang, F. & Liu, H. 2008 Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Expl Biol. 211 (2), 239257.CrossRefGoogle Scholar
Bennett, L. 1966 Insect aerodynamics: vertical sustaining force in near-hovering flight. Science 152 (3726), 12631266.CrossRefGoogle ScholarPubMed
Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412 (6848), 729733.CrossRefGoogle ScholarPubMed
Bomphrey, R. J., Lawson, N. J., Harding, N. J., Taylor, G. K. & Thomas, A. L. R. 2005 The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Expl Biol. 208 (6), 10791094.CrossRefGoogle Scholar
Bomphrey, R. J., Taylor, G. K. & Thomas, A. L. R. 2009 Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Exp. Fluids 46 (5), 811821.CrossRefGoogle Scholar
Dickinson, M. H. & Gotz, K. G. 1993 Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Expl Biol. 174 (1), 4564.Google Scholar
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.CrossRefGoogle ScholarPubMed
Dong, H., Bozkurttas, M., Mittal, R., Madden, P. & Lauder, G. V. 2010 Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645, 345373.CrossRefGoogle Scholar
Dong, H. & Liang, Z. 2010 Effects of ipsilateral wing–wing interactions on aerodynamic performance of flapping wings. In Proceedings of 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2010-71.Google Scholar
Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
Ellington, C. P. 1984 The aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond. B 305 (1122), 4178.CrossRefGoogle Scholar
Ellington, C. P., Van Den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
Hu, Z. & Deng, X. 2014 Aerodynamic interaction between forewing and hindwing of a hovering dragonfly. Acta Mechanica Sin. 30 (6), 787799.CrossRefGoogle Scholar
Koehler, C., Liang, Z., Gaston, Z., Wan, H. & Dong, H. 2012 3D reconstruction and analysis of wing deformation in free-flying dragonflies. J. Expl Biol. 215 (17), 30183027.CrossRefGoogle ScholarPubMed
Lehmann, F.-O. 2008 When wings touch wakes: understanding locomotor force control by wake–wing interference in insect wings. J. Expl Biol. 211 (2), 224233.CrossRefGoogle ScholarPubMed
Lehmann, F.-O. & Pick, S. 2007 The aerodynamic benefit of wing–wing interaction depends on stroke trajectory in flapping insect wings. J. Expl Biol. 210 (8), 13621377.CrossRefGoogle Scholar
Lehmann, F.-O., Sane, S. P. & Dickinson, M. 2005 The aerodynamic effects of wing–wing interaction in flapping insect wings. J. Expl Biol. 208 (16), 30753092.CrossRefGoogle Scholar
Li, C., Dong, H. & Liu, G. 2015 Effects of a dynamic trailing-edge flap on the aerodynamic performance and flow structures in hovering flight. J. Fluids Struct. 58, 4965.CrossRefGoogle Scholar
Liang, B. & Sun, M. 2013 Aerodynamic interactions between wing and body of a model insect in forward flight and maneuvers. J. Bionic Engng 10 (1), 1927.CrossRefGoogle Scholar
Lighthill, M. J. 1973 On the Weis-Fogh mechanism of lift generation. J. Fluid Mech. 60 (1), 117.CrossRefGoogle Scholar
Liu, G., Ren, Y., Zhu, J., Bart-Smith, H. & Dong, H. 2015 Thrust producing mechanisms in ray-inspired underwater vehicle propulsion. Theor. Appl. Mech. Lett. 5 (1), 5457.CrossRefGoogle Scholar
Liu, H. & Kawachi, K. 1998 A numerical study of insect flight. J. Comput. Phys. 146 (1), 124156.CrossRefGoogle Scholar
Luttges, M. W. 1989 Accomplished insect fliers. In Frontiers in Experimental Fluid Mechanics, pp. 429456. Springer.CrossRefGoogle Scholar
Maxworthy, T. 1979 Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the fling. J. Fluid Mech. 93 (1), 4763.CrossRefGoogle Scholar
Maybury, W. J & Lehmann, F.-O. 2004 The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J. Expl Biol. 207 (26), 47074726.CrossRefGoogle ScholarPubMed
Miller, L. A. & Peskin, C. S. 2005 A computational fluid dynamics of clap and fling’ in the smallest insects. J. Expl Biol. 208 (2), 195212.CrossRefGoogle ScholarPubMed
Mittal, R. & Balachandar, S. 1995 Generation of streamwise vortical structures in bluff body wakes. Phys. Rev. Lett. 75 (7), 13001303.CrossRefGoogle ScholarPubMed
Mittal, R., Dong, H., Bozkurttas, M., Najjar, F. M., Vargas, A. & von Loebbecke, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227 (10), 48254852.CrossRefGoogle Scholar
Reavis, M. A. & Luttges, M. W. 1988 Aerodynamic forces produced by a dragonfly. AIAA J. 88 (0330), 113.Google Scholar
Sane, S. P. 2003 The aerodynamics of insect flight. J. Expl Biol. 206 (23), 41914208.CrossRefGoogle ScholarPubMed
Srygley, R. B. & Thomas, A. LR. 2002 Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420 (6916), 660664.CrossRefGoogle ScholarPubMed
Sun, M. & Tang, J. 2002 Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Expl Biol. 205 (1), 5570.Google ScholarPubMed
Sun, M. & Yu, X. 2006 Aerodynamic force generation in hovering flight in a tiny insect. AIAA J. 44 (7), 15321540.CrossRefGoogle Scholar
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L. & Bomphrey, R. J. 2004 Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Expl Biol. 207 (24), 42994323.CrossRefGoogle ScholarPubMed
Tobalske, B. W., Warrick, D. R., Clark, C. J., Powers, D. R., Hedrick, T. L., Hyder, G. A. & Biewener, A. A. 2007 Three-dimensional kinematics of hummingbird flight. J. Expl Biol. 210 (13), 23682382.CrossRefGoogle ScholarPubMed
Van Den Berg, C. & Ellington, C. P. 1997 The three-dimensional leading-edge vortex of a hovering model hawkmoth. Phil. Trans. R. Soc. Lond. B 352 (1351), 329340.CrossRefGoogle Scholar
Wan, H., Dong, H. & Gai, K. 2015 Computational investigation of cicada aerodynamics in forward flight. J. R. Soc. Interface 12 (102), 20141116.Google ScholarPubMed
Wang, Z. J. 2004 The role of drag in insect hovering. J. Expl Biol. 207 (23), 41474155.CrossRefGoogle ScholarPubMed
Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183210.CrossRefGoogle Scholar
Wang, Z. J. & Russell, D. 2007 Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys. Rev. Lett. 99 (14), 148101.CrossRefGoogle ScholarPubMed
Weis-Fogh, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Expl Biol. 59, 169230.Google Scholar
Yu, X. & Sun, M. 2009 A computational study of the wing–wing and wing–body interactions of a model insect. Acta Mechanica Sin. 25 (4), 421431.CrossRefGoogle Scholar
Zhang, J. & Lu, X. 2009 Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight. Phys. Rev. E 80 (1), 017302.CrossRefGoogle Scholar

Liu et al. supplementary movie

3D flow structures of WB model

Download Liu et al. supplementary movie(Video)
Video 8 MB

Liu et al. supplementary movie

3D flow structures of WN model

Download Liu et al. supplementary movie(Video)
Video 8 MB
66
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Vortex dynamics and new lift enhancement mechanism of wing–body interaction in insect forward flight
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Vortex dynamics and new lift enhancement mechanism of wing–body interaction in insect forward flight
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Vortex dynamics and new lift enhancement mechanism of wing–body interaction in insect forward flight
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *