Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-27T20:44:22.364Z Has data issue: false hasContentIssue false

Where do small, weakly inertial particles go in a turbulent flow?

Published online by Cambridge University Press:  27 March 2012

Mathieu Gibert
Affiliation:
Max Planck Institute for Dynamics and Self Organization (MPIDS), 37077 Göttingen, Germany International Collaboration for Turbulence Research
Haitao Xu
Affiliation:
Max Planck Institute for Dynamics and Self Organization (MPIDS), 37077 Göttingen, Germany International Collaboration for Turbulence Research
Eberhard Bodenschatz*
Affiliation:
Max Planck Institute for Dynamics and Self Organization (MPIDS), 37077 Göttingen, Germany Institute for Nonlinear Dynamics, University of Göttingen, 37077 Göttingen, Germany Laboratory of Atomic and Solid-State Physics and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA International Collaboration for Turbulence Research
*
Email address for correspondence: eberhard.bodenschatz@ds.mpg.de

Abstract

We report experimental results on the dynamics of heavy particles of the size of the Kolmogorov scale in a fully developed turbulent flow. The mixed Eulerian structure function of two-particle velocity and acceleration difference vectors was observed to increase significantly with particle inertia for identical flow conditions. We show that this increase is related to a preferential alignment between these dynamical quantities. With increasing particle density the probability for those two vectors to be collinear was observed to grow. We show that these results are consistent with the preferential sampling of strain-dominated regions by inertial particles.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Institut NÉEL CNRS/UJF (Grenoble France).

References

1. Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras, J. C. 2002 Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77105.Google Scholar
2. Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 23432353.Google Scholar
3. Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349358.Google Scholar
4. Berg, J., Lüthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in turbulent flow: An experimental investigation. Phys. Rev. E 74, 16304.Google Scholar
5. Betchov, R. 1956 An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1 (5), 497504.Google Scholar
6. Chun, J. H., Koch, D. L., Rani, S. L., Ahluwalia, A. & Collins, L. R. 2005 Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech. 536, 219251.Google Scholar
7. Collins, L. R. & Keswani, A. 2004 Reynolds number scaling of particle clustering in turbulent aerosols. New J. Phys. 6, 119.Google Scholar
8. Ducasse, L. & Pumir, A. 2008 Intermittent particle distribution in synthetic free-surface turbulent flows. Phys. Rev. E 77 (6), 066304.Google Scholar
9. Falkovich, G., Fouxon, A. & Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151154.Google Scholar
10. Falkovich, G., Gawȩdzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913.Google Scholar
11. Falkovich, G. & Pumir, A. 2004 Intermittent distribution of heavy particles in a turbulent flow. Phys. Fluids 16 (7), L47L50.Google Scholar
12. Gibert, M., Xu, H. & Bodenschatz, E. 2010 Inertial effects on two-particle separation in a turbulent flows. Europhys. Lett. 90 (6), 64005.Google Scholar
13. Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
14. Hill, R. J. 2006 Opportunities for use of exact statistical equations. J. Turbul. 7 (43), 113.Google Scholar
15. Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 8191.Google Scholar
16. Kholmyansky, M., Tsinober, A. & Yorish, S. 2001 Velocity derivatives in the atmospheric surface layer at . Phys. Fluids 13, 311.Google Scholar
17. Lüthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87.Google Scholar
18. Mann, J., Ott, S. & Andersen, J. S. 1999 Experimental study of relative, turbulent diffusion. Risø–R–1036(EN).Google Scholar
19. Maxey, M. & Riley, J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.Google Scholar
20. Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: A Voronoï analysis. Phys. Fluids 22, 103304.Google Scholar
21. Ouellette, N. T., Xu, H. & Bodenschatz, E. 2006 A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. Fluids 40, 301313.Google Scholar
22. Pumir, A., Shraiman, B. & Chertkov, M. 2001 The Lagrangian view of energy transfer in turbulent flow. Europhys. Lett. 56 (3), 379385.Google Scholar
23. Pumir, A., Xu, H. & Bodenschatz, E. 2012 Tetrad deformation and alignment of vorticity and strain in a turbulent flow (in preparation).Google Scholar
24. Salazar, J. P. L. C & Collins, L. R 2012 Inertial particle relative velocity statistics in homogeneous isotropic turbulence. J. Fluid Mech. 696, 4567.Google Scholar
25. Salazar, J. P. L. C, Jong, J. D., Cao, L., Woodward, S. H., Meng, H. & Collins, L. R. 2008 Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech. 600, 245256.Google Scholar
26. Saw, E. W., Shaw, R. A., Ayyalasomayajula, S., Chuang, P. Y. & Gylfason, A. 2008 Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100 (21), 214501.Google Scholar
27. Schmitt, F. C. & Seuront, L. 2008 Intermittent turbulence and copepod dynamics: Increase in encounter rates through preferential concentration. J. Mar. Syst. 70, 263272.Google Scholar
28. Shaw, R. A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.Google Scholar
29. Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.Google Scholar
30. Wood, A. M., Hwang, W. & Eaton, J. K. 2005 Preferential concentration of particles in homogeneous and isotropic turbulence. Intl J. Multiphase Flow 31 (10–11), 12201230.Google Scholar
31. Xu, H. 2008 Tracking Lagrangian trajectories in position-velocity space. Meas. Sci. Technol. 19 (7), 075105.Google Scholar
32. Xu, H. & Bodenschatz, E. 2008 Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows. Physica D 237, 20952100.Google Scholar
33. Xu, H., Ouellette, N. T., Vincenzi, D. & Bodenschatz, E. 2007 Acceleration correlations and pressure structure functions in high-Reynolds number turbulence. Phys. Rev. Lett. 99, 204501.Google Scholar
34. Xu, H., Pumir, A. & Bodenschatz, E. 2011 The pirouette effect in turbulent flows. Nat. Phys. 7, 709712.Google Scholar
35. Zaichik, L. I. & Alipchenkov, V. M. 2009 Statistical models for predicting pair dispersion and particle clustering in isotropic turbulence and their applications. New J. Phys. 11, 103018.Google Scholar