Skip to main content
×
Home
    • Aa
    • Aa

Accelerated Stokesian Dynamics simulations

  • ASIMINA SIEROU (a1) and JOHN F. BRADY (a1)
Abstract

A new implementation of the conventional Stokesian Dynamics (SD) algorithm, called accelerated Stokesian Dynamics (ASD), is presented. The equations governing the motion of N particles suspended in a viscous fluid at low particle Reynolds number are solved accurately and efficiently, including all hydrodynamic interactions, but with a significantly lower computational cost of O(N ln N). The main differences from the conventional SD method lie in the calculation of the many-body long-range interactions, where the Ewald-summed wave-space contribution is calculated as a Fourier transform sum and in the iterative inversion of the now sparse resistance matrix. The new method is applied to problems in the rheology of both structured and random suspensions, and accurate results are obtained with much larger numbers of particles. With access to larger N, the high-frequency dynamic viscosities and short-time self-diffusivities of random suspensions for volume fractions above the freezing point are now studied. The ASD method opens up an entire new class of suspension problems that can be investigated, including particles of non-spherical shape and a distribution of sizes, and the method can readily be extended to other low-Reynolds-number-flow problems.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 84 *
Loading metrics...

Abstract views

Total abstract views: 244 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th May 2017. This data will be updated every 24 hours.