Skip to main content Accessibility help
×
×
Home

Acceleration in turbulent channel flow: universalities in statistics, subgrid stochastic models and an application

  • Rémi Zamansky (a1), Ivana Vinkovic (a1) and Mikhael Gorokhovski (a1)

Abstract

This paper focuses on the characterization and the stochastic modelling of the fluid acceleration in turbulent channel flow. In the first part, the acceleration is studied by direct numerical simulation (DNS) at three Reynolds numbers ( ${\mathit{Re}}_{\ast } = {u}_{\ast } h/ \nu = 180$ , 590 and 1000). It is observed that whatever the wall distance is, the norm of acceleration is log-normally distributed and that the variance of the norm is very close to its mean value. It is also observed that from the wall to the centreline of the channel, the orientation of acceleration relaxes statistically towards isotropy. On the basis of dimensional analysis, a universal scaling law for the acceleration norm is proposed. In the second part, in the framework of the norm/orientation decomposition, a stochastic model of the acceleration is introduced. The stochastic model for the norm is based on fragmentation process which evolves across the channel with the wall distance. Simultaneously the orientation is simulated by a random walk on the surface of a unit sphere. The process is generated in such a way that the mean components of the orientation vector are equal to zero, whereas with increasing wall distance, all directions become equally probable. In the third part, the models are assessed in the framework of large-eddy simulation with stochastic subgrid acceleration model (LES–SSAM), introduced recently by Sabel’nikov, Chtab-Desportes & Gorokhovski (Euro. Phys. J. B, vol. 80, 2011, p. 177–187), and designed to account for the intermittency at subgrid scales. Computations by LES–SSAM and its assessment using DNS data show that the prediction of important statistics to characterize the flow, such as the mean velocity, the energy spectra at small scales, the viscous and turbulent stresses, the distribution of the acceleration can be considerably improved in comparison with standard LES. In the last part of this paper, the advantage of LES–SSAM in accounting for the subgrid flow structure is demonstrated in simulation of particle-laden turbulent channel flows. Compared to standard LES, it is shown that for different Stokes numbers, the particle dynamics and the turbophoresis effect can be predicted significantly better when LES–SSAM is applied.

Copyright

Corresponding author

Email address for correspondence: mikhael.gorokhovski@ec-lyon.fr

Footnotes

Hide All

Present address: Center for Turbulence Research, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.

Footnotes

References

Hide All
Afonso, M. M. & Meneveau, C. 2010 Recent fluid deformation closure for velocity gradient tensor dynamics in turbulence: timescale effects and expansions. Physica D 239, 12411250.
Antonia, R. A., Kim, J. & Browne, L. W. B. 1991 Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369388.
Armenio, V., Piomelli, U. & Fiorotto, V. 1999 Effect of the subgrid scales on particle motion. Phys. Fluids 11 (10), 30303042.
Barenblatt, G. I. 1993 Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. J. Fluid Mech. 248, 513520.
Barenblatt, G. I. 1996 Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press.
Barenblatt, G. I. & Prostokishin, V. M. 1993 Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data. J. Fluid Mech. 248, 521529.
Brasseur, J. G. & Wei, T. 2010 Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids 22 (2), 021303.
Buffat, M., Le Penven, L. & Cadiou, A. 2011 An efficient spectral method based on an orthogonal decomposition of the velocity for transition analysis in wall bounded flow. Comput. Fluids 42, 6272.
Burton, G. C. & Dahm, W. J. A. 2005a Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing. Phys. Fluids 17, 075111.
Burton, G. C. & Dahm, W. J. A. 2005b Multifractal subgrid-scale modeling for large-eddy simulation. II. Backscatter limiting and a posteriori evaluation. Phys. Fluids 17, 075112.
Champagne, F. H., Harris, V. G. & Corsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81139.
Chaouat, B. & Schiestel, R. 2009 Further insight into sub-grid scale transport for continuous hybrid non-zonal RANS/LES simulations. In Proceeding of the Sixth Internal Symposium on Turbulence and Shear Flow Phenomena (TSFP 6) (ed. N. Kasagi, J. K. Eaton, J. A. C. Humphrey, A. V. Johansson & H. J. Sung), pp. 1063–1068.
Chen, L., Coleman, S. W., Vassilicos, J. C. & Hu, Z. 2010 Acceleration in turbulent channel flow. J. Turbul. 11 (N41).
Chevillard, L. & Meneveau, C. 2006 Recent fluid deformation closure for velocity gradient tensor dynamics in turbulence: timescale effects and expansions. Phys. Rev. Lett. 97, 174501.
Choi, J.-I., Yeo, K. & Lee, C. 2004 Lagrangian statistics in turbulent channel flow. Phys. Fluids 16 (3), 779793.
Christensen, K. & Adrian, R. 2002 The velocity and acceleration signatures of small-scale vortices in turbulent channel flow. J. Turbul. 3, 2729.
Clift, R., Grace, J. & Weber, M. 1978 Bubble, Drops and Particles. Academic.
Crawford, A. M., Mordant, N. & Bodenschatz, E. 2005 Joint statistics of the Lagrangian acceleration and velocity in fully developed turbulence. Phys. Rev. Lett. 94 (2), 024501.
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.
Gorokhovski, M. 2003 Fragmentation under the scaling symmetry and turbulent cascade with intermittency. In Annual Research Briefs 2003, pp. 197–203. Stanford University: Center for Turbulence Research.
Gorokhovski, M. A. & Saveliev, V. L. 2008 Statistical universalities in fragmentation under scaling symmetry with a constant frequency of fragmentation. J. Phys. D: Appl. Phys. 41, 085405.
Hill, R. J. 2002 Scaling of acceleration in locally isotropic turbulence. J. Fluid Mech. 452, 361370.
Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20 (10), 101511.
Hughes, T. J. R., Oberai, A. A. & Mazzei, L. 2001 Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys. Fluids 13 (6), 17841799.
Jiménez, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 2745.
Kadanoff, L. P. 2000 Statistical Physics, Statics, Dynamics and Renormalization. World Scientific.
Kemenov, K. A. & Menon, S. 2006 Explicit small-scale velocity simulation for high-Re turbulent flows. J. Comput. Phys. 220, 290311.
Kemenov, K. A. & Menon, S. 2007 Explicit small-scale velocity simulation for high-Re turbulent flows. Part II: Non-homogeneous flows. J. Comput. Phys. 222, 673701.
Kerstein, A. R. 1999 One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277334.
Kerstein, A. R. 2002 One-dimensional turbulence: a new approach to high-fidelity subgrid closure of turbulent flow simulations. Comput. Phys. Commun. 148, 116.
Kuerten, J. G. M. 2006 Subgrid modelling in particle-laden channel flow. Phys. Fluids 18, 025108.
Kuerten, J. G. M. & Vreman, A. W. 2005 Can turbophoresis be predicted by large-eddy simulation? Phys. Fluids 17, 011701.
Lamorgese, A. G., Pope, S. B., Yeung, P. K. & Sawford, B. L. 2007 A conditionally cubic-Gaussian stochastic Lagrangian model for acceleration in isotropic turbulence. J. Fluid Mech. 582, 243448.
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Course of Theoretical Physics, Volume 6, Pergamon.
Larsson, J., Lien, F. S. & Yee, E. 2007 Feedback-controlled forcing in hybrid LES/RANS. Intl J. Comput. Fluid Dyn. 20, 687699.
Lee, C., Yeo, K. & Choi, J.-I. 2004 Intermittent nature of acceleration in near-wall turbulence. Phys. Rev. Lett. 92 (14), 144502.
Lévêque, E., Toschi, F., Shao, L. & Bertoglio, J.-P. 2007 Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 570, 491502.
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (3), 633635.
Marchioli, C., Salvetti, M. V. & Soldati, A. 2008 Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20 (4), 040603.
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32, 132.
Monin, A. S. & Yaglom, A. M. 1981 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT.
Mordant, N., Crawford, A. M. & Bodenschatz, E. 2004a Experimental Lagrangian acceleration probability density function measurement. Physica D 193 (1–4), 245251.
Mordant, N., Crawford, A. M. & Bodenschatz, E. 2004b Three-dimensional structure of the Lagrangian acceleration in turbulent flows. Phys. Rev. Lett. 93 (21), 214501.
Mordant, N., Delour, J., Lévêque, E., Arnéodo, A. & Pinton, J.-F. 2002 Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence. Phys. Rev. Lett. 89 (25), 254502.
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to ${\mathit{Re}}_{\tau } = 590$ . Phys. Fluids 11 (4), 943945.
Moser, R. D., Moin, P. & Leonard, A. 1983 A spectral numerical method for the Navier–Stokes equations with applications to Taylor–Couette flow. J. Comput. Phys. 52, 524544.
Park, N. & Mahesh, K. 2008 A velocity-estimation subgrid model constrained by subgrid scale dissipation. J. Comput. Phys. 227, 41904206.
Pinsky, M., Khain, A. & Tsinober, A. 2000 Accelerations in isotropic and homogeneous turbulence and Taylor’s hypothesis. Phys. Fluids 12 (12), 31953204.
Piomelli, U. & Balaras, E. 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349374.
Piomelli, U., Balaras, E., Pasinato, H., Squires, K. D. & Spalart, P. R. 2003 The inner-outer layer interface in large-eddy simulations with wall-layer models. Intl J. Heat Fluid Flow 24 (4), 538550.
Pope, S. B. 1990 Lagrangian microscales in turbulence. Phil. Trans. R. Soc. Lond. 333 (1631), 309319.
Pope, S. B. 1991 Application of the velocity-dissipation probability density function model to inhomogeneous turbulent flows. Phys. Fluids A 3 (8), 19471957.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Pope, S. B. & Chen, Y. L. 1990 The velocity-dissipation probability density function model for turbulent flows. Phys. Fluids 2 (8), 14371449.
Pozorski, J. & Apte, S. V. 2009 Filtered particle tracking in isotropic turbulence and stochastic modelling of subgrid-scale dispersion. Intl J. Multiphase Flow 35 (2), 118128.
Reynolds, A. M., Mordant, N., Crawford, A. M. & Bodenschatz, E. 2005 On the distribution of Lagrangian accelerations in turbulent flows. New J. Phys. 7 (1), 58.
Sabel’nikov, V., Chtab-Desportes, A. & Gorokhovski, M. 2011 New sub-grid stochastic acceleration model in LES of high-Reynolds-number flows. Eur. Phys. J. B 80 (2), 177187.
Sagaut, P. 2002 Large Eddy Simulation for Incompressible Flows: An Introduction, 2nd edn. Springer.
Sagaut, P., Montreuil, E. & Labbé, O. 1999 Assessment of some self-adaptive SGS models for wall bounded flows. Aerosp. Sci. Technol. 6, 335344.
Sarghini, F., Piomelli, U. & Balaras, E. 1999 Scale-similar models for large-eddy simulations. Phys. Fluids 11 (6), 15961607.
Saveliev, V. L. & Gorokhovski, M. A. 2005 Group-theoretical model of developed turbulence and renormalization of the Navier–Stokes equation. Phys. Rev. E 72, 016302.
Saveliev, V. L. & Gorokhovski, M. A. 2012 Renormalization of the fragmentation equation: exact self-similar solutions and turbulent cascades. Phys. Rev. E 86, 061112.
Sawford, B. L., Yeung, P. K., Borgas, M. S., Vedula, P., La Porta, A., Crawford, A. M. & Bodenschatz, E. 2003 Conditional and unconditional acceleration statistics in turbulence. Phys. Fluids 15 (11), 34783489.
Schmidt, R. C., Kerstein, A. R. & Wunsch, S. 2003 Near-wall LES closure based on one-dimensional turbulence modelling. J. Comput. Phys. 186, 317355.
Shur, M. L., Spalart, P. R., Strelets, M. Kh. & Travin, A. K. 2008 A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Intl J. Heat Fluid Flow 29 (6), 16381649.
Smits, A, J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds Number Wall Turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Spalart, P. R., Deck, S., Shur, M. L., Squires, K. D., Strelets, M. Kh. & Travin, A. 2006 A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181195.
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41 (1), 375404.
Tsinober, A., Vedula, P. & Yeung, P. K. 2001 Random taylor hypothesis and the behaviour of local and convective accelerations in isotropic turbulence. Phys. Fluids 13 (7), 19741984.
Vedula, P. & Yeung, P. K. 1999 Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys. Fluids 11 (5), 12081220.
Vinkovic, I., Aguirre, C., Ayrault, M. & Simoëns, S. 2006 Large-eddy simulation of the dispersion of solid particles in a turbulent boundary layer. Boundary-Layer Meteorol. 121, 283311.
Volker, S., Moser, R. D. & Venugopal, P. 2002 Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Phys. Fluids 14 (10), 36753691.
Voth, G. A., La Porta, A., Grawford, A. M., Alexander, J. & Bodenschatz, E. 2002 Measurements of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121.
Voth, G. A., Satyanarayan, K. & Bodenschatz, E. 1998 Lagrangian acceleration measurements at large Reynolds numbers. Phys. Fluids 10, 2268.
Wang, Q. & Squires, K. D. 1996 Large eddy simulation of particle-laden turbulent channel flow. Phys. Fluids 8 (5), 12071223.
Westbury, P. S., Dunn, D. C. & Morrison, J. F. 2004 Analysis of a stochastic backscatter model for the large-eddy simulation of wall-bonded flow. Eur. J. Mech. B 23, 737758.
Xu, H., Ouellette, N. T., Vincenzi, D. & Bodenschatz, E. 2007 Acceleration correlations and pressure structure functions in high-Reynolds number turbulence. Phys. Rev. Lett. 99, 204501.
Yeo, K., Kim, B.-G. & Lee, C. 2010 On the near-wall characteristics of acceleration in turbulence. J. Fluid Mech. 659, 405419.
Yeung, P. K., Pope, S. B., Lamorgese, A. G. & Donzis, D. A. 2006 Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103.
Zamansky, R., Vinkovic, I. & Gorokhovski, M. 2010 LES approach coupled with stochastic forcing of subgrid acceleration in a high Reynolds number channel flow. J. Turbul. 11 (30), 118.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed