Skip to main content
×
Home
    • Aa
    • Aa

Actively flapping tandem flexible flags in a viscous flow

  • Emad Uddin (a1), Wei-Xi Huang (a2) and Hyung Jin Sung (a1)
Abstract

The active flapping motions of fish and cetaceans generate both propulsive and manoeuvring forces. The tail fin motions of the majority of fish can essentially be viewed as a combined pitch-and-heave motion. Downstream bodies are strongly influenced by the vortices shed from an upstream body. To investigate the interactions between flexible bodies and vortices, the present study examined tandem flexible flags in a viscous flow by using an improved version of the immersed boundary method. The upstream flag underwent passive flapping in a uniform flow while the downstream flag flapped according to a prescribed pitching and heaving motion of the leading edge. The influences of the active flapping motion on the system dynamics were examined in detail, including the frequency, the phase angle, the bending coefficient and the amplitudes of the pitching and heaving motion. The variation of the drag coefficient of the downstream flag was explored together with the instantaneous vorticity contours and the body shapes. Both the slalom mode and the interception mode were identified according to the vortex–flexible body interactions, corresponding to the low- and high-drag situations, respectively. The underlying mechanism was discussed and compared with previous studies.

Copyright
Corresponding author
Email address for correspondence: hjsung@kaist.ac.kr
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

S. Alben 2009 Wake-mediated synchronization and drafting in coupled flags. J. Fluid Mech. 641, 489496.

S. Alben 2011 Flapping propulsion using a fin ray. J. Fluid Mech. 705, 149164.

S. Alben , P. G. Madden  & G. V. Lauder 2007 The mechanics of active fin-shape control in ray-finned fishes. J. R. Soc. Interface 4 (12), 243256.

S. Alben , C. Witt , T. V. Baker , E. Anderson  & G. V. Lauder 2012 Dynamics of freely swimming flexible foils. Phys. Fluids 24, 051901.

I. Akhtar , R. Mittal , G. V. Lauder  & E. Drucker 2007 Hydrodynamics of a biologically inspired tandem flapping foil configuration. Theor. Comput. Fluid Dyn. 21, 155170.

J. M. Anderson , K. Streitlien , D. S. Barrett  & M. S. Triantafyllou 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.

D. N. Beal , F. S. Hover , M. S. Triantafyllou , J. C. Liao  & G. V. Lauder 2006 Passive propulsion in vortex wakes. J. Fluid Mech. 549, 385402.

H.-B. Deng , Y.-Q. Xu , D.-D. Chen , H. Dai , J. Wu  & F.-B. Tian 2013 On numerical modeling of animal swimming and flight. Comput. Mech. 52, 12211242.

C. Eloy  & E. Lauga 2012 Kinematics of the most efficient cilium. Phys. Rev. Lett. 109, 038101.

F. E. Fish  & G. V. Lauder 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.

R. Gopalkrishnan , M. S. Triantafyllou , G. S. Triantafyllou  & D. Barrett 1994 Active vorticity control in a shear flow using a flapping foil. J. Fluid Mech. 274, 121.

L. Guglielmini  & P. Blondeaux 2004 Propulsive efficiency of oscillating foils. Eur. J. Mech. (B/Fluids) 23, 255278.

W.-X. Huang , S. J. Shin  & H. J. Sung 2007 Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226, 22062228.

W.-X. Huang  & H. J. Sung 2009 An immersed boundary method for fluid-flexible structure interaction. Comput. Meth. Appl. Mech. Engng 198, 26502661.

L. B. Jia  & X. Y. Yin 2008 Passive oscillations of two tandem flexible filaments in a flowing soap film. Phys. Rev. Lett. 100, 228104.

C. K. Kang , H. Aono , C. E. S. Cesnik  & W. Shyly 2011 Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689, 3274.

K. Kim , S.-J. Baek  & H. J. Sung 2002 An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 38, 125138.

S. Kim , W.-X. Huang  & H. J. Sung 2010 Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. J. Fluid Mech. 661, 511521.

G. V. Lauder , E. J. Anderson , J. Tangorra  & P. G. Madden 2007 Fish biorobotics: kinematics and hydrodynamics of self-propulsion. J. Expl Biol. 210, 27672780.

J. C. Liao , D. N. Beal , G. V. Lauder  & M. S. Triantafyllou 2003 Fish exploiting vortices decrease muscle activity. Science 302, 15661569.

M. J. Lighthill 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44, 265301.

C. Marais , B. Thiria , J. E. Wesfreid  & R. Godoy-diana 2012 Stabilizing effect of flexibility in the wake of a flapping foil. J. Fluid Mech. 710, 659669.

H. Masoud  & A. Alexeev 2010 Resonance of flexible flapping wings at low Reynolds number. Phys. Rev. E 81, 056304.

S. Michelin  & S. G. L. Smith 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902.

S. Ramananarivo , R. Godoy-diana  & B. Thiria 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. USA 108, 59645969.

L. Ristroph  & J. Zhang 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101, 194502.

M. J. Shelley  & J. Zhang 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43, 449465.

S. J. Shin , W.-X. Huang  & H. J. Sung 2008 Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method. Intl J. Numer. Meth. Fluids 58, 263286.

K. Shoele  & Q. Zhu 2012 Leading edge strengthening and the propulsion performance of flexible ray fins. J. Fluid Mech. 693, 402432.

W. Shyy , H. Aono , S. K. Chimakurthi , P. Trizila , C.-K. Kang , C. E. S. Cesnik  & H. Liu 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284327.

S. E. Spagnolie , L. Moret , M. J. Shelley  & J. Zhang 2010 Surprising behaviors in flapping locomotion with passive pitching. Phys. Fluids 22, 041903.

B. Thiria  & R. Godoy-diana 2010 How wing compliance drives the efficiency of self-propelled flapping flyers. Phys. Rev. E 82, 015303(R).

I. H. Tuncer  & M. Kaya 2005 Optimization of flapping airfoils for maximum thrust and propulsive efficiency. AIAA J. 43 (11), 23292336.

E. Uddin , W.-X. Huang  & H. J. Sung 2013 Interaction modes of multiple flexible flags in a uniform flow. J. Fluid Mech. 729, 563583.

Z. J. Wang 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183210.

C. H. K. Williamson  & R. Govardhan 2004 Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413455.

T. Y. Wu 2011 Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43, 2558.

J. Zhang , S. Childress , A. Libchaber  & M. Shelley 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835839.

L. Zhu 2009 Interaction of two tandem deformable bodies in a viscous incompressible flow. J. Fluid Mech. 635, 455475.

X. Zhu , G. He  & X. Zhang 2014a Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil. Comput. Fluids 97, 120.

X. Zhu , G. He  & X. Zhang 2014b How flexibility affects the wake symmetry properties of a self-propelled plunging foil. J. Fluid Mech. 751, 164183.

X. Zhu , G. He  & X. Zhang 2014c Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration. Phys. Rev. Lett. 113, 238105.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
VIDEO
Movies

Uddin et al. supplementary movie
Fig15(d)

 Video (2.3 MB)
2.3 MB
VIDEO
Movies

Uddin et al. supplementary movie
Fig8(a)

 Video (1.3 MB)
1.3 MB
VIDEO
Movies

Uddin et al. supplementary movie
Fig15(a)

 Video (2.3 MB)
2.3 MB
VIDEO
Movies

Uddin et al. supplementary movie
Fig8 (b)

 Video (3.3 MB)
3.3 MB
VIDEO
Movies

Uddin et al. supplementary movie
Fig15(b)

 Video (2.3 MB)
2.3 MB
VIDEO
Movies

Uddin et al. supplementary movie
Fig8(c)

 Video (2.3 MB)
2.3 MB
VIDEO
Movies

Uddin et al. supplementary movie
Fig8(d)

 Video (2.3 MB)
2.3 MB
VIDEO
Movies

Uddin et al. supplementary movie
Fig15(c)

 Video (2.3 MB)
2.3 MB

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 72 *
Loading metrics...

Abstract views

Total abstract views: 141 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 29th May 2017. This data will be updated every 24 hours.