Skip to main content
    • Aa
    • Aa

Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils

  • Jacob S. Izraelevitz (a1) and Michael S. Triantafyllou (a1)

We study experimentally the effect of adding an in-line oscillatory motion to the oscillatory heaving and pitching motion of flapping foils that use a power downstroke. We show that far from being a limitation imposed by the muscular structure of certain animals, in-line motion can be a powerful means to either substantially augment the mean lift, or reduce oscillatory lift and increase thrust; propulsive efficiency can also be increased. We also show that a model-based optimization scheme that is used to drive an iterative sequence of experimental runs provides exceptional ability for flapping foils to tightly vector and keep the force in a desired direction, hence improving performance in locomotion and manoeuvring. Flow visualization results, using particle image velocimetry, establish the connection of distinct wake patterns with flapping modes associated with high lift forces, or modes of high thrust and low lift forces.

Corresponding author
Email address for correspondence:
Hide All
J. M. Anderson , K. Streitlein , D. S. Barrett  & M. S. Triantafyllou 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.

A. M. Berg  & A. A. Biewener 2010 Wing and body kinematics of takeoff and landing flight in the pigeon (columba livia). J. Expl Biol. 213 (10), 16511658.

J. Davenport , S. A. Munks  & P. J. Oxford 1984 A comparison of the swimming of marine and freshwater turtles. Proc. R. Soc. Lond. B 220 (1221), 447475.

C. DiLeo  & X. Deng 2009 Design of and experiments on a dragonfly-inspired robot. Adv. Robot. 23 (7–8), 10031021.

B. P. Epps  & A. H. Techet 2007 Impulse generated during unsteady maneuvering of swimming fish. Exp. Fluids 43 (5), 691700.

P. E. Gill , W. Murray  & M. A. Saunders 2005 SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47 (1), 99131.

N. Hansen  & A. Ostermeier 2001 Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9 (2), 159195.

A. Hedenström , L. C. Johansson  & G. R. Spedding 2009 Bird or bat: comparing airframe design and flight performance. Bioinspir. Biomim. 4 (1), 015001.

F. S. Hover , Ø. Haugsdal  & M. S. Triantafyllou 2004 Effect of angle of attack profiles in flapping foil propulsion. J. Fluids Struct. 19 (1), 3747.

M. Jabri  & B. Flower 1992 Weight perturbation: an optimal architecture and learning technique for analog VLSI feedforward and recurrent multi-layer networks. IEEE Trans. Neural Networks 3, 154157.

M. Kaya  & I. H. Tuncer 2007 Nonsinusoidal path optimization of a flapping airfoil. AIAA J. 45 (8), 20752082.

S. Kern  & P. Koumoutsakos 2006 Simulations of optimized anguilliform swimming. J. Expl Biol. 209 (24), 48414857.

G. Koekkoek , F. T. Muijres , L. C. Johansson , M. Stuiver , B. W. van Oudheusden  & A. Hedenström 2012 Stroke plane angle controls leading edge vortex in a bat-inspired flapper. C. R. Méc. 340 (1–2), 95106.

S. C. Licht , M. S. Wibawa , F. S. Hover  & M. S. Triantafyllou 2010 In-line motion causes high thrust and efficiency in flapping foils that use power downstroke. J. Expl Biol. 213 (1), 6371.

U. M. Lindhe Norberg  & Y. Winter 2006 Wing beat kinematics of a nectar-feeding bat, Glossophaga soricina, flying at different flight speeds and Strouhal numbers. J. Expl Biol. 209 (19), 38873897.

C. Maresca , D. Favier  & J. Rebont 1978 Experiments on an aerofoil at high angle of incidence in longitudinal oscillations. J. Fluid Mech. 92 (4), 671690.

K. W. Moored , P. A. Dewey , A. J. Smits  & H. Haj-Hariri 2012 Hydrodynamic wake resonance as an underlying principle of efficient unsteady propulsion. J. Fluid Mech. 708, 329348.

R. L. Nudds , G. K. Taylor  & A. L. R. Thomas 2004 Tuning of Strouhal number for high propulsive efficiency accurately predicts how wingbeat frequency and stroke amplitude relate and scale with size and flight speed in birds. Proc. R. Soc. Lond. B 271 (1552), 20712076.

Y. Pan , X. Dong , Q. Zhu  & D. K. P. Yue 2012 Boundary-element method for the prediction of performance of flapping foils with leading-edge separation. J. Fluid Mech. 698, 446467.

D. A. Read , F. S. Hover  & M. S. Triantafyllou 2003 Forces on oscillating foils for propulsion and maneuvering. J. Fluids Struct. 17, 163183.

J. W. Roberts , L. Moret , J. Zhang  & R. Tedrake 2010 Motor Learning at Intermediate Reynolds Number: Experiments with Policy Gradient on the Flapping Flight of a Rigid Wing. In From Motor to Interaction Learning in Robots vol. 264, p. 293, Springer.

L. Schouveiler , F. Hover  & M. Triantafyllou 2005 Performance of flapping foil propulsion. J. Fluids Struct. 20 (7), 949959.

A. Slaouti  & J. H. Gerrard 1981 An experimental investigation of the end effects on the wake of a circular cylinder towed through water at low Reynolds numbers. J. Fluid Mech. 112, 297314.

B. G. Szymik  & R. A. Satterlie 2011 Changes in wingstroke kinematics associated with a change in swimming speed in a pteropod mollusk, Clione limacina. J. Expl Biol. 214 (23), 39353947.

G. K. Taylor , R. L. Nudds  & A. L. R. Thomas 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425 (October), 707711.

A. L. R. Thomas , G. K. Taylor , R. B. Srygley , R. L. Nudds  & R. J. Bomphrey 2004 Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Expl Biol. 207 (24), 42994323.

B. W. Tobalske , D. R. Warrick , C. J. Clark , D. R. Powers , T. L. Hedrick , G. A. Hyder  & A. A. Biewener 2007 Three-dimensional kinematics of hummingbird flight. J. Expl Biol. 210 (13), 23682382.

G. S. Triantafyllou , M. S. Triantafyllou  & M. A. Grosenbaugh 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7 (2), 205224.

M. S. Triantafyllou , G. S. Triantafyllou  & R. Gopalkrishnan 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A 3 (12), 2835.

K. Viswanath  & D. K. Tafti 2012 Effect of stroke deviation on forward flapping flight. AIAA J. 51 (1), 145160.

H. Wagner 1925 Über die entstehung des dynamischen auftriebes von tragflügeln. Z. Angew. Math. Mech. 5 (1), 1735.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 97 *
Loading metrics...

Abstract views

Total abstract views: 282 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.