Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-29T06:06:29.327Z Has data issue: false hasContentIssue false

Aeroacoustic sources analysis of wake-ingesting propeller noise

Published online by Cambridge University Press:  04 May 2023

Jianyun Yangzhou
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Department of Aeronautics and Astronautics, College of Engineering, Peking University, Beijing 100871, PR China
Jiafeng Wu
Affiliation:
Wuhan Second Ship Design and Research Institute, Wuhan 430205, PR China
Zhaokai Ma*
Affiliation:
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
Xun Huang*
Affiliation:
State Key Laboratory of Turbulence and Complex Systems, Department of Aeronautics and Astronautics, College of Engineering, Peking University, Beijing 100871, PR China
*
Email addresses for correspondence: zhaokai.ma@nuaa.edu.cn, huangxun@pku.edu.cn
Email addresses for correspondence: zhaokai.ma@nuaa.edu.cn, huangxun@pku.edu.cn

Abstract

High resolution aeroacoustic source analysis is a prerequisite to address the noise concerns and release the full benefits of wake-ingesting propellers. In this work, the aeroacoustic sources of a two-bladed propeller ingesting the wake of an aerofoil are investigated using large eddy simulation in conjunction with two different source identifying approaches. The first approach is the numerical beamforming that utilizes both the classical and wavelet-based beamforming techniques, which determine the phase variations of sources at the low to mid frequencies and reveal that the high-frequency sources are phase-independent. To further improve the spatial resolution of source identification, a new near-field aeroacoustic source analysis approach based on the acoustic analogy is developed in this work. In particular, the on-surface source terms emanating the far-field noise are derived based on the Ffowcs Williams and Hawkings equation for low Mach number flows and constant rotating propellers. Through the incorporation of the simulation results into the proposed source analysis approach, various types of aeroacoustic sources are identified and studied by visualizing their distributions on the propeller surfaces, correlating to flow features and examining the noise spectra and directivity. While the leading edge sources are highly correlated with the wake interaction process, the sources at the mid-chord and the trailing edge of the blade can maintain their strength across most revolving angles. Overall, the proposed analysis approaches extend the capability of computational fluid dynamics and enable the detailed study of noise generation mechanisms of wake-ingesting propeller noise.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, J.L., Menoret, A. & Ricot, D. 2009 Direct aeroacoustic source identification based on lattice Boltzmann simulation and beamforming technique. AIAA Paper .CrossRefGoogle Scholar
Alexander, W.N., Molinaro, N.J., Hickling, C., Murray, H., Devenport, W.J. & Glegg, S.A. 2016 Phased array measurements of a rotor ingesting a turbulent shear flow. AIAA Paper .CrossRefGoogle Scholar
Anderson, J.M., Catlett, M.R. & Stewart, D.O. 2015 Modeling rotor unsteady forces and sound due to homogeneous turbulence ingestion. AIAA J. 53 (1), 8192.CrossRefGoogle Scholar
Arnhem, N.V., Vos, R. & Veldhuis, L.L. 2019 Aerodynamic loads on an aft-mounted propeller induced by the wing wake. AIAA Paper .CrossRefGoogle Scholar
Blake, W.K. 2017 Mechanics of Flow-induced Sound and Vibration, 2nd edn. Academic.Google Scholar
Brown, K., Fleming, J., Langford, M., Walton, W., Ng, W., Schwartz, K., Wisda, D. & Burdisso, R. 2021 Reduced-order prediction of unsteady propeller loading and noise from pylon wake ingestion. AIAA J. 59 (9), 33043316.CrossRefGoogle Scholar
Casalino, D., Avallone, F., Gonzalez-Martino, I. & Ragni, D. 2019 Aeroacoustic study of a wavy stator leading edge in a realistic fan/OGV stage. J. Sound Vib. 442, 138154.CrossRefGoogle Scholar
Catlett, M.R., Anderson, J.M. & Stewart, D.O. 2012 Aeroacoustic response of propellers to sheared turbulent inflow. AIAA Paper .CrossRefGoogle Scholar
Chen, W.Q., Jiang, H.B. & He, W.S. 2022 Dipole source-based virtual three-dimensional imaging for propeller noise. Aero. Sci. Technol. 124, 107562.CrossRefGoogle Scholar
Chen, W.Q., Peng, B., Liem, R.P. & Huang, X. 2020 a Experimental study of airfoil–rotor interaction noise by wavelet beamforming. J. Acoust. Soc. Am. 147 (5), 32483259.CrossRefGoogle ScholarPubMed
Chen, W.Q., Zhong, S.Y. & Huang, X. 2020 b Extended-resolution acoustic imaging of low-frequency wave sources by acoustic analogy-based tomography. J. Fluid Mech. 899, A12.CrossRefGoogle Scholar
Deneuve, A., Druault, P., Marchiano, R. & Sagaut, P. 2010 A coupled time-reversal/complex differentiation method for aeroacoustic sensitivity analysis: towards a source detection procedure. J. Fluid Mech. 642, 181212.CrossRefGoogle Scholar
Evans, D., Hartmann, M. & Delfs, J. 2019 Beamforming for point force surface sources in numerical data. J. Sound Vib. 458, 303319.CrossRefGoogle Scholar
Farassat, F. & Succi, G.P. 1980 A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations. J. Sound Vib. 71 (3), 399419.CrossRefGoogle Scholar
Ffowcs Williams, J.E. & Hawkings, D.L. 1969 Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Lond. A 264 (1151), 321342.Google Scholar
Fleury, V. & Chélius, A. 2013 Analysis of contra rotating open rotors flyover noise data by beamforming techniques. Proc. Meet. Acoust. 19, 030123.CrossRefGoogle Scholar
Freund, J.B 2001 Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277305.CrossRefGoogle Scholar
Guo, H.P. & Zou, Z.J. 2022 CFD and system-based investigation on the turning maneuver of a twin-screw ship considering hull–engine–propeller interaction. Ocean Engng 251, 110893.CrossRefGoogle Scholar
Hall, Z. 2017 CFD modeling of US army UAVs using NASA's OVERFLOW CFD code. AIAA Paper .CrossRefGoogle Scholar
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.CrossRefGoogle Scholar
Hickling, C., Alexander, W.N., Nicholas, N.J., Devenport, W.J. & Glegg, S.A. 2017 Efficient beamforming techniques for investigating turbulence ingestion noise with an inhomogeneous inflow. AIAA Paper .CrossRefGoogle Scholar
Horváth, C. 2015 Beamforming investigation of dominant counter-rotating open rotor tonal and broadband noise sources. AIAA J. 53 (6), 16021611.CrossRefGoogle Scholar
Horváth, C., Envia, E. & Podboy, G.G. 2014 Limitations of phased array beamforming in open rotor noise source imaging. AIAA J. 52 (8), 18101817.CrossRefGoogle Scholar
Howe, M.S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71 (4), 625673.CrossRefGoogle Scholar
Huang, X. 2023 Convolution for haystacking in turbulence-ingesting rotor noise. AIAA J. 61 (2), 950954.CrossRefGoogle Scholar
Huang, X., Bai, L., Vinogradov, I. & Peers, E. 2012 Adaptive beamforming for array signal processing in aeroacoustic measurements. J. Acoust. Soc. Am. 131 (3), 21522161.CrossRefGoogle ScholarPubMed
Jiang, H.B., Wu, H., Chen, W.Q., Zhou, P., Zhong, S.Y., Zhang, X., Zhou, G.C. & Chen, B. 2022 Toward high-efficiency low-noise propellers: a numerical and experimental study. Phys. Fluids 34 (7), 076116.CrossRefGoogle Scholar
Keller, J., Kumar, P. & Mahesh, K. 2018 Examination of propeller sound production using large eddy simulation. Phys. Rev. Fluids 3 (6), 064601.CrossRefGoogle Scholar
Khorrami, M.R., Konig, B. & Fares, E. 2021 Aeroacoustic study of a subscale large civil transport (STAR) model. Part 2. Validation of simulated results. AIAA Paper .CrossRefGoogle Scholar
Kingan, M.J. & Parry, A.B. 2019 Acoustic theory of the many-bladed contra-rotating propeller: analysis of the effects of blade sweep on wake interaction noise. J. Fluid Mech. 868, 385427.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On sound generated aerodynamically. 1. General theory. Proc. R. Soc. Lond. A 211 (1107), 564587.Google Scholar
Lilley, G.M. 1996 The radiated noise from isotropic turbulence with applications to the theory of jet noise. J. Sound Vib. 190 (3), 463476.CrossRefGoogle Scholar
Lockard, D.P., Humphreys, W.M., Khorrami, M.R., Fares, E., Casalino, D. & Ravetta, P.A. 2017 Comparison of computational and experimental microphone array results for an 18 % scale aircraft model. Intl J. Aeroacoust. 16 (4–5), 358381.CrossRefGoogle ScholarPubMed
Lv, P., Ragni, D., Hartuc, T., Veldhuis, L. & Rao, A.G. 2017 Experimental investigation of the flow mechanisms associated with a wake-ingesting propulsor. AIAA J. 55 (4), 13321342.CrossRefGoogle Scholar
Ma, P. 2017 Computational acoustic beamforming for noise source identification for small horizontal axis wind turbines. PhD thesis, University of Waterloo, Ontario, Canada.CrossRefGoogle Scholar
Majumdar, S.J. & Peake, N. 1998 Noise generation by the interaction between ingested turbulence and a rotating fan. J. Fluid Mech. 359, 181216.CrossRefGoogle Scholar
Martinez, R. 1996 Asymptotic theory of broadband rotor thrust. Part 2. Analysis of the right frequency shift of the maximum response. J. Appl. Mech. 63, 143148.CrossRefGoogle Scholar
Maruta, Y. & Kotake, S. 1983 Separated flow noise of a flat plate at large attack angles. J. Sound Vib. 89 (3), 335357.CrossRefGoogle Scholar
Maynard, J.D., Williams, E.G. & Lee, Y. 1985 Nearfield acoustic holography. 1. Theory of generalized holography and the development of NAH. J. Acoust. Soc. Am. 78 (4), 13951413.CrossRefGoogle Scholar
Murray, H.H., Devenport, W.J., Alexander, W.N., Glegg, S.A.L. & Wisda, D. 2018 Aeroacoustics of a rotor ingesting a planar boundary layer at high thrust. J. Fluid Mech. 850, 212245.CrossRefGoogle Scholar
Nelson, C., Cain, A., Raman, G., Chan, T., Saunders, M., Noble, J., Engeln, R., Dougherty, R., Brentner, K. & Morris, P. 2012 Numerical studies of wind turbine acoustics. AIAA Paper .CrossRefGoogle Scholar
Padois, T., Prax, C., Valeau, V. & Marx, D. 2012 Experimental localization of an acoustic sound source in a wind-tunnel flow by using a numerical time-reversal technique. J. Acoust. Soc. Am. 132 (4), 23972407.CrossRefGoogle Scholar
Panickar, P., Sinha, N. & Murray, N. 2013 Localization of acoustic sources in shock-containing jet flows using phased array measurements. AIAA Paper .CrossRefGoogle Scholar
Pardo, A.C. & Hall, C.A. 2021 Aerodynamics of boundary layer ingesting fuselage fans. J. Turbomach. 143 (4), 041007.CrossRefGoogle Scholar
Pignier, N.J., O'Reilly, C. & Boij, S. 2016 Aeroacoustic study of a submerged air inlet using an IDDES/FW–H approach and sound source modelling through direct numerical beamforming. AIAA Paper .CrossRefGoogle Scholar
Posa, A., Broglia, R. & Felli, M. 2022 a Acoustic signature of a propeller operating upstream of a hydrofoil. Phys. Fluids 34 (6), 065132.CrossRefGoogle Scholar
Posa, A., Felli, M. & Broglia, R 2022 b Influence of an upstream hydrofoil on the acoustic signature of a propeller. Phys. Fluids 34 (4), 045112.CrossRefGoogle Scholar
Posa, A., Felli, M. & Broglia, R. 2022 c The signature of a propeller–rudder system: acoustic analogy based on LES data. Ocean Engng 259, 112059.CrossRefGoogle Scholar
Powell, A. 1964 Theory of vortex sound. J. Acoust. Soc. Am. 36 (1), 177195.CrossRefGoogle Scholar
Qin, D.H., Huang, Q.G., Pan, G., Chao, L.M., Luo, Y. & Han, P. 2022 Effect of the odd and even number of blades on the hydrodynamic performance of a pre-swirl pumpjet propulsor. Phys. Fluids 34 (3), 035120.CrossRefGoogle Scholar
Qin, D.H., Pan, G., Lee, S., Huang, Q.G. & Shi, Y. 2019 Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor. Ocean Engng 188, 106228.CrossRefGoogle Scholar
Ramachandran, R.C., Raman, G. & Dougherty, R.P. 2014 Wind turbine noise measurement using a compact microphone array with advanced deconvolution algorithms. J. Sound Vib. 333 (14), 30583080.CrossRefGoogle Scholar
Robison, R.A.V. & Peake, N. 2014 Noise generation by turbulence–propeller interaction in asymmetric flow. J. Fluid Mech. 758, 121149.CrossRefGoogle Scholar
Rougier, T., Bouvy, Q., Casalino, D., Appelbaum, J. & Kleinclaus, C. 2015 Design of quieter landing gears through lattice-Boltzmann CFD simulations. AIAA Paper 2015-3259.CrossRefGoogle Scholar
Shur, M., Strelets, M., Travin, A., Christophe, J., Kucukcoskun, K., Schram, C., Sack, S. & Åbom, M. 2018 Experimental/numerical study of ducted-fan noise: effect of duct inlet shape. AIAA J. 56 (3), 979996.CrossRefGoogle Scholar
Sijtsma, P. 2006 Beamforming on moving sources. Tech. Rep. NLR-TP-2006-733. National Aerospace Laboratory.Google Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. 1. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.2.3.CO;2>CrossRefGoogle Scholar
Tan, X.M., Yang, Z.G., Tan, X.M., Wu, X.L. & Zhang, J. 2018 Vortex structures and aeroacoustic performance of the flow field of the pantograph. J. Sound Vib. 432, 1732.Google Scholar
Tiseira Izaguirre, A.O., García-Cuevas González, L.M., Quintero Igeño, P. & Varela Martínez, P. 2022 Series-hybridisation, distributed electric propulsion and boundary layer ingestion in long-endurance, small remotely piloted aircraft: fuel consumption improvements. Aerosp. Sci. Technol. 120, 107227.CrossRefGoogle Scholar
Tobak, M. & Peake, D.J. 1982 Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 14 (1), 6185.CrossRefGoogle Scholar
Tokaji, K., Soós, B. & Horváth, C. 2020 Beamforming method for extracting the broadband noise sources of counter-rotating open rotors. AIAA J. 58 (7), 30283039.CrossRefGoogle Scholar
Turner, J.M. & Kim, J.W. 2022 Quadrupole noise generated from a low-speed aerofoil in near- and full-stall conditions. J. Fluid Mech. 936, A34.CrossRefGoogle Scholar
Van Balen, W., Uijttewaal, W.S.J. & Blanckaert, K. 2009 Large-eddy simulation of a mildly curved open-channel flow. J. Fluid Mech. 630, 413442.CrossRefGoogle Scholar
Van Driest, E.R. 1956 On turbulent flow near a wall. J. Aeronaut. Sci. 23 (11), 10071011.CrossRefGoogle Scholar
Wang, J.Y., Wang, K. & Wang, M. 2021 Computational prediction and analysis of rotor noise generation in a turbulent wake. J. Fluid Mech. 908, A19.CrossRefGoogle Scholar
Wang, M., Freund, J.B. & Lele, S.K. 2006 Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38 (1), 483512.CrossRefGoogle Scholar
Wasala, S.H., Storey, R.C., Norris, S.E. & Cater, J.E. 2015 Aeroacoustic noise prediction for wind turbines using large eddy simulation. J. Wind Engng Ind. Aerodyn. 145, 1729.CrossRefGoogle Scholar
Wojno, J.P., Mueller, T.J. & Blake, W.K. 2002 Turbulence ingestion noise. Part 2. Rotor aeroacoustic response to grid-generated turbulence. AIAA J. 40 (1), 2632.CrossRefGoogle Scholar
Wu, J.F., Jiang, H.B., Ma, Z.K., Chen, W.Q. & Huang, X. 2022 Numerical investigation of airfoil–rotor interaction at low Reynolds number. Phys. Fluids 34 (2), 025118.CrossRefGoogle Scholar
Xiong, Z.Y., Rui, W., Lu, L.Z., Zhang, G.P. & Huang, X. 2022 Experimental investigation of broadband thrust and loading noise from pumpjet due to turbulence ingestion. Ocean Engng 255, 111408.CrossRefGoogle Scholar
Yao, H.Y., Cao, L.L., Wu, D.Z., Yu, F.X. & Huang, B. 2020 Generation and distribution of turbulence-induced forces on a propeller. Ocean Engng 206, 107255.CrossRefGoogle Scholar
Zhou, D., Wang, K. & Wang, M. 2021 Computation of rotor noise generation in a thick axisymmetric turbulent boundary layer. AIAA Paper .CrossRefGoogle Scholar
Zhou, D., Wang, K. & Wang, M. 2022 Computational analysis of noise generation by a rotor at the rear of an axisymmetric body of revolution. AIAA Paper .CrossRefGoogle Scholar