Skip to main content
    • Aa
    • Aa

Aerodynamics of planar counterflowing jets

  • A. D. Weiss (a1), W. Coenen (a1) and A. L. Sánchez (a1)

The planar laminar flow resulting from the impingement of two gaseous jets of different density issuing into an open space from aligned steadily fed slot nozzles of semi-width $H$ separated by a distance $2L$ is investigated by numerical and analytical methods. Specific consideration is given to the high Reynolds and low Mach number conditions typically present in counterflow-flame experiments, for which the flow is nearly inviscid and incompressible. It is shown that introduction of a density-weighted vorticity–streamfunction formulation effectively reduces the problem to one involving two jets of equal density, thereby removing the vortex-sheet character of the interface separating the two jet streams. Besides the geometric parameter $L/H$ , the solution depends only on the shape of the velocity profiles in the feed streams and on the jet momentum-flux ratio. While conformal mapping can be used to determine the potential solution corresponding to uniform velocity profiles, numerical integration is required in general to compute rotational flows, including those arising with Poiseuille velocity profiles, with simplified solutions found in the limits $L/H\ll 1$ and $L/H\gg 1$ . The results are used to quantify the near-stagnation-point region, of interest in counterflow-flame studies, including the local value of the strain rate as well as the curvature of the separating interface and the variations of the strain rate away from the stagnation point.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J. M. Bergthorson , K. Sone , T. W. Mattner , P. E. Dimotakis , D. G. Goodwin  & D. I. Meiron 2005 Impinging laminar jets at moderate Reynolds numbers and separation distances. Phys. Rev. E 72, 066307.

G. Birkhoff  & E. H. Zarantonello 1957 Jets, Wakes and Cavities. Academic.

J. Carpio , A. Liñán , A. L. Sánchez  & F. A. Williams 2017 Aerodynamics of axisymmetric counterflowing jets. Combust. Flame 177, 137143.

M. S. Cha  & P. D. Ronney 2006 Propagation rates of nonpremixed edge flames. Combust. Flame 146, 312328.

V. A. Denshchikov , V. N. Kondrat’ev  & A. N. Romashov 1978 Interaction between two opposed jets. Fluid Dyn. 13, 924926.

V. A. Denshchikov , V. N. Kondrat’Ev , A. N. Romashov  & V. M. Chubarov 1983 Auto-oscillations of planar colliding jets. Fluid Dyn. 18, 460462.

R. Gardon  & J. C. Akfirat 1966 Heat transfer characteristics of impinging two-dimensional air jets. Trans. ASME J. Heat Transfer 88, 101107.

V. Gupta , S. A. Safvi  & T. J. Mountziaris 1996 Gas-phase decomposition kinetics in a wall-less environment using a counterflow jet reactor: design and feasibility studies. Ind. Engng Chem. Res. 35, 32483255.

M. I. Gurevich 1966 The Theory of Jets in an Ideal Fluid. Pergamon.

F. Hecht 2012 New development in FreeFem++. J. Numer. Math. 20, 251265.

S. M. Hosseinalipour  & A. S. Mujumdar 1997a Flow and thermal characteristics of steady two dimensional confined laminar opposing jets: part I. Equal jets. Intl Commun. Heat Mass Transfer 24, 2738.

S. M. Hosseinalipour  & A. S. Mujumdar 1997b Flow and thermal characteristics of steady two dimensional confined laminar opposing jets: part II. Unequal jets. Intl Commun. Heat Mass Transfer 24, 3950.

J. Kim , P. A. Libby  & F. A. Williams 1993 On the displacement effects of laminar flames. Combust. Sci. Technol. 87, 125.

H. C. Levey 1960 The back effect of a wall on a jet. Z. Angew. Math. Phys. 11, 152157.

W. F. Li , G. F. Huang , G. Y. Tu , H. F. Liu  & F. C. Wang 2013 Experimental study of planar opposed jets with acoustic excitation. Phys. Fluids 25, 014108.

W. F. Li , T. L. Yao , H. F. Liu  & F. C. Wang 2011 Experimental investigation of flow regimes of axisymmetric and planar opposed jets. AIChE J. 57, 14341445.

A. Liñán , M. Vera  & A. L. Sánchez 2015 Ignition, liftoff, and extinction of gaseous diffusion flames. Annu. Rev. Fluid Mech. 47, 293314.

J.-B. Liu  & P. D. Ronney 1999 Premixed edge-flames in spatially-varying straining flows. Combust. Sci. Technol. 144, 2145.

H. Martin 1977 Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Transfer 13, 160.

L. M. Milne-Thomson 1968 Theoretical Hydrodynamics. Macmillan.

D. Moreno-Boza , W. Coenen , A. Sevilla , J. Carpio  & A. L. Sánchez 2016 Diffusion-flame flickering as a hydrodynamic global mode. J. Fluid Mech. 798, 9971014.

U. Niemann , K. Seshadri  & F. A. Williams 2015 Accuracies of laminar counterflow flame experiments. Combust. Flame 162, 15401549.

R. P. Pawlowski , A. G. Salinger , J. N. Shadid  & T. J. Mountziaris 2006 Bifurcation and stability analysis of laminar isothermal counterflowing jets. J. Fluid Mech. 551, 117139.

N. Peters 2000 Turbulent Combustion. Cambridge University Press.

D. J. Phares , G. T. Smedley  & R. C. Flagan 2000a The inviscid impingement of a jet with arbitrary velocity profile. Phys. Fluids 12, 20462055.

D. J. Phares , G. T. Smedley  & R. C. Flagan 2000b The wall shear stress produced by the normal impingement of a jet on a flat surface. J. Fluid Mech. 418, 351375.

C. B. Renner  & P. S. Doyle 2015 Stretching self-entangled DNA molecules in elongational fields. Soft Matt. 11, 31053114.

A. Revuelta , A. L. Sánchez  & A. Liñán 2002 The virtual origin as a first-order correction for the far-field description of laminar jets. Phys. Fluids 14, 18211824.

A. Rubel 1980 Computations of jet impingement on a flat surface. AIAA J. 18, 168175.

G. Scribano  & F. Bisetti 2016 Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows. Phys. Fluids 28, 123605.

M. L. Shay  & P. D. Ronney 1998 Nonpremixed edge flames in spatially varying straining flows. Combust. Flame 112, 171180.

H. S. Song , P. Wang , R. S. Boles , D. Matinyan , H. Prahanphap , J. Piotrowicz  & P. D. Ronney 2017 Effects of mixture fraction on edge-flame propagation speeds. Proc. Combust. Inst. 36, 14031409.

T. Strand 1962 Inviscid-incompressible-flow theory of static two-dimensional solid jets in proximity to the ground. J. Aero. Sci. 29, 170173.

A. Tamir 1994 Impinging Streams Reactors: Fundamentals and Applications. Elsevier.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 12
Total number of PDF views: 173 *
Loading metrics...

Abstract views

Total abstract views: 209 *
Loading metrics...

* Views captured on Cambridge Core between 16th May 2017 - 26th June 2017. This data will be updated every 24 hours.