Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-30T06:02:06.002Z Has data issue: false hasContentIssue false

An experimental investigation of a magnetically driven rotating liquid-metal flow

Published online by Cambridge University Press:  29 March 2006

T. Robinson
Affiliation:
AB Atomenergi, Studsvik, Fack, Nyköping, Sweden
Kjell Larsson
Affiliation:
AB Atomenergi, Studsvik, Fack, Nyköping, Sweden

Abstract

Flow and turbulence in a 50 Hz rotating-field MHD system are investigated using the hot-film constant-temperature anemometer. Factors affecting anemometer disturbances and response time are discussed. From measurements of the magnetic field at points within the liquid the distribution of MHD forces is estimated. The mean rotational velocity of the flow is of the expected order of magnitude but much less dependent on the axial co-ordinate than the corresponding MHD force. With the aid of a thermal transit-time anemometer, a weak secondary flow is detected. A note on scale-model studies of MHD systems envisaged in metallurgical applications of magnetohydrodynamics points out some basic difficulties in modelling large high-powered systems on a small scale.

Type
Research Article
Copyright
© 1973 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bednarz, T. K. 1970 An experimental investigation of electromagnetic stirring in a coreless induction furnace. Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, Penn.
Bellhouse, B. J. & Schultz, D. L. 1967 The determination of fluctuating velocity in air with heated thin film gauges J. Fluid Mech. 29, 289295.Google Scholar
Bradbury, L. J. S. & Castro, I. P. 1971 A pulsed-wire technique for velocity measurements in highly turbulent flows J. Fluid Mech. 49, 657691.Google Scholar
Bradshaw, P. 1971 An Introduction to Turbulence and its Measurement. Pergamon.
Briskman, V. A., Ermakov, O. I., Rudakov, V. K. & Fedotov, V. M. 1970 Turbulent flow of liquid metal due to a rotating magnetic field Gos. Univ., Perm, Uchenye Zapiski, 216, 255261.Google Scholar
Dahlberg, E. 1972 On the action of a rotating magnetic field on a conducting liquid. AB Atomenergi, Studsvik, Sweden, Rep. AE-447.Google Scholar
Gerlach, G. 1972 Reaktor für Flüssigmetalle Chemie-Ing.-Tech. 44, 379.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids, p. 5. Cambridge University Press.
Hayes, D. J., Baum, M. R. & Hobdell, M. R. 1971 The performance and applications of an electromagnetic rotary-flow device in liquid sodium J. Br. Nucl. Energy Soc. 10, 93.Google Scholar
Hill, J. C. & Sleicher, C. A. 1971 Directional sensitivity of hot film sensors in liquid metals Rev. Sci. Instrum. 42, 14611468.Google Scholar
Hinze, J. O. 1959 Turbulence, pp. 184185. McGraw-Hill.
Hoff, M. 1969 Hot film anemometry in liquid mercury Instrum. & Control Systems, 42, 8386.Google Scholar
Hunt, J. C. R. & Malcolm, D. G. 1968 Some electrically driven flows in magnetohydrodynamics J. Fluid Mech. 33, 775801.Google Scholar
Kapusta, A. B. 1969 On the theory of centrifugal casting in a rotating magnetic field Magnitnaya Gidrodinamika, 11, 117120.Google Scholar
Kjellström, B. 1972 Transport processes in turbulent channel flow. Swedish Board for Tech. Development, Stockholm, Rep. no. 70–409/U 340.Google Scholar
Larsson, K. 1973 Appendix to “Applications of MHD in metallurgy”. Swedish Board for Tech. Development, Fack, Stockholm, Rep. no. 72–392/U 312.Google Scholar
Lighthill, M. J. 1954 The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. Roy. Soc A 224, 123.Google Scholar
Malcolm, D. G. 1969a DISA Inf. no. 9.
Malcolm, D. G. 1969b Some aspects of turbulence measurement in liquid mercury using cylindrical quartz-insulated hot-film sensors J. Fluid Mech. 37, 701713.Google Scholar
Moffatt, H. K. 1965 On fluid flow induced by a rotating magnetic field J. Fluid Mech. 22, 521528. (Corrigendum 1973 J. Fluid Mech. 58, 823.)Google Scholar
Ower, E. & Pankhurst, R. C. 1966 The Measurement of Air Flow, pp. 4546. Pergamon.
Perry, A. E. & Morrison, G. L. 1971 A study of the constant-temperature hot-film anemometer J. Fluid Mech. 47, 577599.Google Scholar
Prandtl, L. 1945 Über ein neues Formelsystem für die ausgebildete Turbulenz. Nachr. Akad. Wiss. Göttingen, Math.-phys. Klasse, pp. 619. (See also 1961 Ludwig Prandtl Gesammelte Abhandlungen, Berlin, pp. 847–887.)
Rezin, N. G., Ermakov, O. I. & Vetrov, B. G. 1967 A stator for electromagnetic stirring in continuous casting of pig-iron. Proc. Conf. Applic. Electro-Hydrodyn. in Industry, Trudy no. 6, Don. Sci. Res. Inst. for Ferrous Met. pp. 246249. Moscow: Izdatelstvo Metallurgia.Google Scholar
Sajben, M. 1965 Hot-wire anemometer in liquid mercury Rev. Sci. Instrum. 36, 945949.Google Scholar
Schlichting, H. 1968 Boundary-Layer Theory, pp. 246271. McGraw-Hill.
Vedkalov, I. R., Kapusta, A. B., Povkh, I. I., Rotmistovskii, B. M., Koshelev, V. A. & Tolskii, A. A. 1971 Electromagnetic pilot-plant for the treatment of molten metal in a flow. Magnitnaya Gidrodinamika, no. 4, 127–132.Google Scholar