Skip to main content
    • Aa
    • Aa

An explicit Hamiltonian formulation of surface waves in water of finite depth

  • A. C. Radder (a1)

A variational formulation of water waves is developed, based on the Hamiltonian theory of surface waves. An exact and unified description of the two-dimensional problem in the vertical plane is obtained in the form of a Hamiltonian functional, expressed in terms of surface quantities as canonical variables. The stability of the corresponding canonical equations can be ensured by using positive definite approximate energy functionals. While preserving full linear dispersion, the method distinguishes between short-wave nonlinearity, allowing the description of Stokes waves in deep water, and long-wave nonlinearity, applying to long waves in shallow water. Both types of nonlinearity are found necessary to describe accurately large-amplitude solitary waves.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 39 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th May 2017. This data will be updated every 24 hours.