Hostname: page-component-5b777bbd6c-rbv74 Total loading time: 0 Render date: 2025-06-18T15:49:26.394Z Has data issue: false hasContentIssue false

An insulating plate drifting over a thermally convecting fluid: the effect of heating mode on plate motion and coupling mode

Published online by Cambridge University Press:  14 May 2025

Yadan Mao*
Affiliation:
School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, PR China
*
Corresponding author: Yadan Mao, yadan_mao@cug.edu.cn

Abstract

Being thicker and lighter than the oceanic lithosphere, the continental lithosphere exerts a thermal blanket effect on the convective mantle by locally accumulating heat and altering the flow structure, which in turn affects continent motion. This thermal–mechanic feedback has been studied through a simplified model of a thermally insulating plate floating over a bottom-heated convective fluid, which shows that plate mobility enhances with plate size and a unidirectionally moving mode (UMM) emerges for sufficiently large plates. Nevertheless, apart from bottom heating, the mantle is also subject to internal heating induced by radioactive decay. How the addition of internal heating affects the dynamic coupling is still unclear, which motivates the present study. Numerical simulation results show that the effect varies with plate size. For small plates, as internal heating intensifies, plate motion becomes increasingly persistent and the critical plate size for the UMM decreases. This results from the enhanced thermal blanket effect under intensified internal heating, which enables a faster generation of hot plumes to boost plate motion during its slowdown. Most notably, the addition of internal heating brings a new mode for large plates – a permanently stagnant mode (PSM) – in which the plate oscillates permanently above a hot up-welling with down-wellings locating far away. The critical size for the PSM decreases as internal heating intensifies. In the PSM, the symmetry between cold and hot plumes breaks. Implications of these findings for the dynamic coupling on Earth and Mars are discussed.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arslan, A., Fantuzzi, G., Craske, J. & Wynn, A. 2021 Bounds on heat transport for convection driven by internal heating. J. Fluid Mech. 919, A15.CrossRefGoogle Scholar
Arslan, A., Fantuzzi, G., Graske, J. & Wynn, A. 2023 Rigorous scaling laws for internally heated convection at infinite Prandtl number. J. Math. Phys. 64 (2), 023101.CrossRefGoogle Scholar
Bowman, A.W. & Azzalini, A. 1997 Applied Smoothing Techniques for Data Analysis. Oxford University Press Inc.CrossRefGoogle Scholar
Buffett, B.A. 2002 Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett. 29 (12), 1566.CrossRefGoogle Scholar
Bunge, H.-P. & Richards, M.A. 1996 The origin of large scale structure in mantle convection: effects of plate motions and viscosity stratification. Geophys. Res. Lett. 23 (21), 29872990.CrossRefGoogle Scholar
Bunge, H.-P., Richards, M.A. & Baumgardner, J.-R. 1996 Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379 (6564), 436438.CrossRefGoogle Scholar
Bunge, H.-P., Richards, M.A. & Baumgardner, J.R. 1997 A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh numbers: effects of depth-dependent viscosity, heating mode and an endothermic phase change. J. Geophys. Res. 102, 1199112007.CrossRefGoogle Scholar
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover Publications Inc.Google Scholar
Coltice, N., Phillips, B.R., Bertrand, H., Ricard, Y. & Rey, P. 2007 Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391394.CrossRefGoogle Scholar
Coltice, N., Bertrand, H., Rey, P., Jourdan, F., Phillips, B.R. & Ricard, Y. 2009 Global warming of the mantle beneath continents back to the Archaean. Gondwana Res. 15, 254266.CrossRefGoogle Scholar
Condie, K.C. 2005 Earth as an Evolving Planetary System. Elsevier Academic Press.Google Scholar
Cooper, C.M., Moresi, L.-N. & Lenardic, A. 2013 Effects of continental configuration on mantle heat loss. Geophys. Res. Lett. 40, 26472651.CrossRefGoogle Scholar
Creyssels, M. 2021 Model for thermal convection with uniform volumetric energy sources. J. Fluid Mech. 919, A13.CrossRefGoogle Scholar
Davies, G.F. 1977 a Whole mantle convection and plate tectonics. Geophys. J. R. Astron. Soc. 49 (2), 459486.CrossRefGoogle Scholar
Davies, G.F. 1977 b Viscous mantle flow under moving lithospheric plates and under subduction zones. Geophys. J. R. Astron. Soc. 49 (3), 557563.CrossRefGoogle Scholar
Davies, G.F. 1986 Mantle convection under simulated plates: effects of heating modes and ridge and trench migration, and implications for the core-mantle boundary, bathymetry, the geoid and Benioff zones. Geophys. J. R. Astron. Soc. 84 (1), 153183.CrossRefGoogle Scholar
Davies, G.F. 1988 Ocean bathymetry and mantle convection: 1. Large-scale flow and hotspots. J. Geophys. Res. 93 (B9), 1046710480.CrossRefGoogle Scholar
Elder, J. 1967 Convective self-propulsion of continents. Nature 214 (5089), 657750.CrossRefGoogle Scholar
Fourel, L., Limare, A., Jaupart, C., Surducan, E., Farnetani, CG., Kaminski, EC., Neamtu, C. & Surducan, V. 2017 The Earth’s mantle in a microwave oven: thermal convection driven by a heterogeneous distribution of heat sources. Exp. Fluids 58 (8), 90.CrossRefGoogle Scholar
Frey, H.V. 1979 Thaumasia: a fossilized early forming Tharsis uplift. J. Gephys. Res. 84 (B3), 10091023.CrossRefGoogle Scholar
Frey, H.V. 2006 Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111, E08S91.Google Scholar
Gable, C.W., O’Connell, R.J. & Travis, B.J. 1991 Convection in three dimensions with surface plates: generation of toroidal flow. J. Geophys. Res. 96 (B5), 83918405.CrossRefGoogle Scholar
Goluskin, D. 2015 Internally Heated Convection and Rayleigh-Bénard Convection. Springer Internal Publishing.Google Scholar
Goluskin, D. & van der Poel, E.P. 2016 Penetrative internally heated convection in two and three dimensions. J. Fluid Mech. 791, R6.CrossRefGoogle Scholar
Grigne, C. & Labrosse, S. 2001 Effects of continents on Earth cooling: thermal blanketing and depletion in radioactive elements. Geophys. Res. Lett. 28 (14), 27072710.CrossRefGoogle Scholar
Grigne, C., Labrosse, S. & Tackley, P.J. 2007 a Convection under a lid of finite conductivity in wide aspect ratio models: effect of continents on the wavelength of mantle flow. J. Geophys. Res. 112 (B8), B08403.Google Scholar
Grigne, C., Labrosse, S. & Tackley, P.J. 2007 b Convection under a lid of finite conductivity: heatflux scaling and application to continents. J. Geophys. Res. 112 (B8), B08402.Google Scholar
Gurnis, M. 1988 Large-scale mantle convection and aggregation and dispersal of supercontinents. Nature 313 (6166), 541546.Google Scholar
Gurnis, M. & Zhong, S. 1991 Generation of long wavelength heterogeneity in the mantle by the dynamic interaction between plates and convection. Geophys. Res. Lett. 18 (4), 581584.CrossRefGoogle Scholar
Hager, B.H. & O’Connell, R.J. 1978 Subduction zone dip angles and flow driven by plate motion. Tectonophysics 50 (2−3), 111133.CrossRefGoogle Scholar
Hager, B.H. & O’Connell, R.J. 1979 Kinematic models of large-scale flow in the mantle. J. Geophys. Res. 84 (B3), 10311048.CrossRefGoogle Scholar
Hager, B.H. & O’Connell, R.J. 1981 A simple global model of plate motions and mantle convection. J. Geophys. Res. 86 (B6), 48434867.CrossRefGoogle Scholar
Harder, H. & Christensen, U.R. 1996 A one-plume model of Martian mantle convection. Nature 380 (6574), 507509.CrossRefGoogle Scholar
Hart, P.J. 1969 The Earth’s Crust and Upper Mantle. American Geophysical Union.CrossRefGoogle Scholar
Hess, H.H. 1962 History of Ocean Basin, Petrologic studies: A volume to honor A. F. Buddington. Geological Society of America.Google Scholar
Heron, P. & Lowman, J.P. 2011 The effects of supercontinent size and thermal insulation on the formation of mantle plumes. Tectonophysics 510 (1–2), 2838.CrossRefGoogle Scholar
van der Hilst, R.D., de Hoop, M.V., Wang, P., Shim, S.-H., Ma, P. & Tenorio, L. 2007 Seismostratigraphy and thermal structure of earth’s core-mantle boundary region. Science 315 (5820), 18131817.CrossRefGoogle ScholarPubMed
Höink, T. & Lenardic, A. 2008 Three-dimensional mantle convection simulations with a low-viscosity asthenosphere and the relationship between heat flow and the horizontal length scale of convection. Geophys. Res. Lett. 35, L10304.CrossRefGoogle Scholar
Honda, S., Yoshida, M., Ootorii, S. & Iwase, Y. 2000 The timescales of plume generation caused by continental aggregation. Earth Planet. Sci. Lett. 176 (1), 3143.CrossRefGoogle Scholar
Howard, L.N., Malkus, W.V.R. & Whitehead, J.A. 1970 Self-convection of floating heat sources: a model for continental drift. Geophys. Fluid Dyn. 1 (1–2), 123142.CrossRefGoogle Scholar
Huang, J.M. 2024 Covering convection with a thermal blanket: numerical simulation and stochanstic modelling. J. Fluid Mech. 980, A47.CrossRefGoogle Scholar
Johnson, C.L. & Phillips, R.J. 2005 Evolution of the Tharsis regions of Mars: insights form magnetic field observations. Earth Planet. Sci. Lett. 230 (3–4), 241254.CrossRefGoogle Scholar
King, S.D. 2005 Archean cratons and mantle dynamics. Earth Planet Sci. Lett. 234 (1–2), 114.CrossRefGoogle Scholar
Kiefer, W.S. 2003 Melting in the martian mantle: shergottite formation and implications for present‐day mantle convection on Mars. Meteorit. Planet Sci. 38 (12), 18151832.CrossRefGoogle Scholar
Lenardic, A. 1998 On the partitioning of mantle heat loss below oceans and continents over time and its relationship to the Archaean paradox. Geophys. J. Intl 134 (3), 706720.CrossRefGoogle Scholar
Lenardic, A. & Moresi, L. 2001 Heat flow scaling for mantle convection below a conducting lid: resolving seemingly inconsistent modeling results regarding continental heat flow. Geophys. Res. Lett. 28 (7), 13111314.CrossRefGoogle Scholar
Lenardic, A., Moresi, L., Jellinek, A.M. & Manga, M. 2005 Continental insulation, mantle cooling, and the surface area of oceans and continents. Earth Planet. Sci. Lett. 234 (3−4), 317333.CrossRefGoogle Scholar
Lenardic, A., Richards, M.A. & Busse, F.H. 2006 Depth-dependent rheology and the horizontal length scale of mantle convection. J. Geophys. Res. 111 (B7), B07404.Google Scholar
Leonard, B.P. 1979 A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engng 19 (1), 5998.CrossRefGoogle Scholar
Lowman, J.P. & Jarvis, G.T. 1993 Mantle convection flow reversals due to continental collisions. Geophys. Res. Lett. 20 (19), 20872090.CrossRefGoogle Scholar
Lowman, J.P. & Jarvis, G.T. 1995 Mantle convection models of continental collision and breakup incorporating finite thickness plates. Phys. Earth Planet. Inter. 88 (1), 5368.CrossRefGoogle Scholar
Lowman, J.P. & Gable, C.W. 1999 Thermal evolution of the mantle following continental aggregation in 3D convection models. Geophys. Res. Lett. 26 (17), 26492652.CrossRefGoogle Scholar
Mao, Y. 2021 An insulating plate drifting over a thermally convecting fluid: the effect of plate size on plate motion, coupling modes and flow structure. J. Fluid Mech. 916, A18.CrossRefGoogle Scholar
Mao, Y. 2022 An insulating plate drifting over a thermally convecting fluid: the thermal blanket effect on plume motion and the emergence of a unidirectionally moving mode. J. Fluid Mech. 942, A25.CrossRefGoogle Scholar
Mao, Y., Lei, C. & Patterson, J.C. 2009 Unsteady natural convection in a triangular enclosure induced by absorption of radiation – a revisit by improved scaling analysis. J. Fluid Mech. 622, 75102.CrossRefGoogle Scholar
Mao, Y., Lei, C. & Patterson, J.C. 2010 Unsteady near-shore natural convection induced by surface cooling. J. Fluid Mech. 642, 213233.CrossRefGoogle Scholar
Mao, Y., Zhong, J.-Q. & Zhang, J. 2019 The dynamics of an insulating plate over a thermally convecting fluid and its implication for continent movement over convective mantle. J. Fluid Mech. 868, 286315.CrossRefGoogle Scholar
McKenzie, D.P., Roberts, J.M. & Weiss, N.O. 1974 Convection in the earth’s mantle: towards a numerical simulation. J. Fluid Mech. 62 (03), 465538.CrossRefGoogle Scholar
Mege, D. & Masson, P. 1996 A plume tectonics model for the Tharsis province, Mars. Planet. Space Sci. 44 (12), 14991546.CrossRefGoogle Scholar
Mercier, M.J., Ardekani, A.M., Allshouse, M.R., Doyle, B. & Peacock, T. 2014 Self-propulsion of immersed objects via natural convection. Phys. Rev. Lett. 112 (20), 204501.CrossRefGoogle Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. 2004 Post-perovskite phase transition in MgSiO3 . Science 304 (5672), 855858.CrossRefGoogle ScholarPubMed
Neuman, G.A., Zuber, M.T., Wieczorek, M.A., McGovern, P.J., Lemoine, F.G. & Smith, D.E. 2004 Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109, E08002.Google Scholar
Nimmo, F. & Tanaka, K. 2005 Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33, 133161.CrossRefGoogle Scholar
Oganov, R.A. & Ono, S. 2004 Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D’’ layer. Nature 430 (6998), 445448.CrossRefGoogle ScholarPubMed
O’Neill, C., Lenardic, A., Jellinek, A.M. & Moresi, L. 2009 Influence of supercontinents on deep mantle flow. Gondwana Res. 15, 276287.CrossRefGoogle Scholar
Parmentier, E.M. & Turcotte, D.L. 1978 Two-dimensional mantle flow beneath a rigid accreting lithosphere. Phys. Earth Planet. Inter. 17 (4), 281289.CrossRefGoogle Scholar
Patankar, S.V. 1980 Numerical Heat Transfer and Fluid Flow. Taylor & Francis.Google Scholar
Phillips, B.R. & Bunge, H.-P. 2005 Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift. Earth Planet. Sci. Lett. 233 (1–2), 121135.CrossRefGoogle Scholar
Phillips, R.J., et al. 2001 Ancient geodynamics and global-scale hydrology on Mars. Science 291 (5513), 25872591.CrossRefGoogle ScholarPubMed
Pollack, H.N. 1986 Cratonization and thermal evolution of the mantle. Earth Planet. Sci. Lett. 80 (1–2), 175182.CrossRefGoogle Scholar
Pollack, H.N., Hurter, S.J. & Johnson, J.R. 1993 Heat flow from the Earth’s interior: Analysis of the global data set. Rev. Geophys. 31 (3), 267280.CrossRefGoogle Scholar
Roberts, P.H. 1967 Convection in horizontal layers with internal heat generation. Theory. J. Fluid Mech. 30 (1), 3349.CrossRefGoogle Scholar
Roberts, J.H. & Zhong, S. 2006 Degree‐1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. 111, E06013.Google Scholar
Schwiderski, E.W. & Schwab, H.J.A. 1971 Convection experiments with electrolytically heated fluid layers. J. Fluid Mech. 48 (4), 703719.CrossRefGoogle Scholar
Sleep, N.H. 1990 Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. 95 (B5), 67156736.CrossRefGoogle Scholar
Solomon, S.C., et al. 2005 New perspectives on ancient Mars. Science 307 (5713), 12141220.CrossRefGoogle ScholarPubMed
Sotin, C. & Labrosse, S. 1999 Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles. Phys. Earth Planet. Inter. 112 (3–4), 171190.CrossRefGoogle Scholar
Tackley, P.J. 1996 On the ability of phase transitions and viscosity layering to induce long wavelength Heterogeneity in the mantle. Geophys. Res. Lett. 23 (15), 19851988.CrossRefGoogle Scholar
Torrance, K.E. & Turcotte, D.L. 1971 Structure of convection cells in the mantle. J. Geophys. Res. 76 (5), 11541161.CrossRefGoogle Scholar
Tritton, D.J. & Zarraga, M.N. 1967 Convection in horizontal layers with internal heat generation. Experiments. J. Fluid Mech. 30 (1), 2131.CrossRefGoogle Scholar
Turcotte, D. & Schubert, G. 2002 Geodynamics. Cambridge University Press.CrossRefGoogle Scholar
Wang, Q., Lohse, D. & Shishkina, O. 2021 Scaling in internally heated convection: a unifying theory. Geophys. Res. Lett. 48 (4), e2020GL091198.CrossRefGoogle Scholar
Wasserburg, G.J., MacDonald, G.J.F., Holy, F. & Fowler, W.A. 1964 Relative contributions of uranium, thorium and potassium to heat production in the Earth. Science 143 (3605), 465467.CrossRefGoogle Scholar
Whitehead, J.A. 1972 Moving heaters as a model of continental drift. Phys. Earth Planet. Inter. 5, 199212.CrossRefGoogle Scholar
Whitehead, J.A. & Behn, M.D. 2015 The continental drift convection cell. Geophys. Res. Lett. 42 (11), 43014308.CrossRefGoogle Scholar
Yoshida, M., Iwase, Y. & Honda, S. 1999 Generation of plumes under a localized high viscosity lid in 3‐D spherical shell convection. Geophys. Res. Lett. 26 (7), 947950.CrossRefGoogle Scholar
Zhang, J. & Libchaber, A. 2000 Periodic boundary motion in thermal turbulence. Phys. Rev. Lett. 84 (19), 43614364.CrossRefGoogle ScholarPubMed
Zhong, S. 2008 Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere. Nat. Geosci. 2 (1), 1923.CrossRefGoogle Scholar
Zhong, S. & Gurnis, M. 1993 Dynamic feedback between a continentlike raft and thermal convection. J. Geophys. Res. 98 (B7), 1221912232.CrossRefGoogle Scholar
Zhong, J.-Q. & Zhang, J. 2005 Thermal convection with a freely moving top boundary. Phy. Fluids 17 (11), 115105.CrossRefGoogle Scholar
Zhong, J.-Q. & Zhang, J. 2007 Dynamical states of a mobile heat blanket on a thermally convecting fluid. Phys. Rev. E 75 (5), 055301.CrossRefGoogle ScholarPubMed
Zhong, S., Zuber, M.T., Moresi, L. & Gurnis, M. 2000 Role of temperature‐dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105 (B5), 1106311082.CrossRefGoogle Scholar
Zhong, S. & Zuber, M.T. 2001 Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189 (1–2), 7584.CrossRefGoogle Scholar