Skip to main content
×
Home

Analysis of sheet-like thermal plumes in turbulent Rayleigh–Bénard convection

  • OLGA SHISHKINA (a1) and CLAUS WAGNER (a1)
Abstract

Sheet-like thermal plumes are investigated using time-dependent and three-dimensional flow fields obtained from direct numerical simulations and well-resolved large-eddy simulations of turbulent Rayleigh–Bénard convection in water (Prandtl number Pr=5.4) in a cylindrical container with the aspect ratio Γ=1 and for the Rayleigh numbers Ra=2×109 and 2×1010.

To analyse quantitatively the physical properties of the sheet-like thermal plumes and the turbulent background and to obtain the temperature threshold which separates these two different flow regions, the temperature dependences of the conditionally averaged local heat flux, thermal dissipation rate and selected components of the velocity and vorticity fields are studied. It is shown that the sheet-like plumes are characterized by high values of the local heat flux and relatively large absolute values of the vertical components of the vorticity and velocity fields. The borders of these plumes are indicated by large values of the thermal dissipation rate and large absolute values of the horizontal vorticity components. In contrast to the sheet-like thermal plumes, the turbulent background is characterized by low values of the thermal dissipation rate, local heat flux and vertical vorticity component. The highest values of the local heat flux and the highest absolute values of the vertical vorticity component are found in the regions where the sheet-like plumes strike against each other. Fluid swirling at these places forms the stems of the mushroom-like thermal plumes which develop in the bulk of the Rayleigh–Bénard cell.

Further, formulae to calculate the curvature, thickness and length of the plumes are introduced. Geometrical properties such as plume area, diameter, curvature, thickness and aspect ratio together with the physical properties of the sheet-like plumes such as temperature, heat flux, thermal dissipation rate, velocity and vorticity are investigated.

Copyright
References
Hide All
Ahlers G. 2005 Experiments with Rayleigh–Bénard convection. In Dynamics of Spatiotemporal Structures – Henri Benard Centenary Review (ed. Mutabazi I. Guyon E. & Wesfreid J. E.). Springer.
Ahlers G., Brown E., Araujo F. F., Funfschilling D., Grossmann S. & Lohse D. 2006 Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.
Belmonte A. & Libchaber A. 1996 Thermal signature of plumes in turbulent convection: the skewness of the derivative. Phys. Rev. E 53, 48934898.
Ching E. S. C., Guo H., Shang X.-D. Tong P. & Xia K.-Q. 2004 Extraction of plumes in turbulent thermal convection. Phys. Rev. Lett. 93, 124501.
Cortese T. & Balachandar S. 1993 Vortical nature of thermal plumes in turbulent convection. Phys. Fluids 5 (12), 32263232.
Funfschilling D. & Ahlers G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.
Funfschilling D., Brown E., Nikolaenko A. & Ahlers G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536, 145154.
Gray D. D. & Giorgini A. 1976 The validity of the Boussinesq approximation for liquids and gases. Intl J. Heat Mass Transer 19, 545551.
Grossmann S. & Lohse D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Grossmann S. & Lohse D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 44624472
Grötzbach G. 1983 Spatial resolution requirements for direct numerical simulation of Rayleigh–Bénard convection. J. Comput. Phys. 49, 241264.
Haramina T. & Tilgner A. 2004 Coherent structures in boundary layers of Rayleigh–Bénard convection. Phys. Rev. E 69, 056306.
Hartlep T., Tilgner A. & Busse F. H. 2005 Transition to turbulent convection in a fluid layer heated from below at moderate aspect ratio. J. Fluid Mech. 544, 309322.
Juliem K., Legg S. McWilliams J. & Werne J. 1999 Plumes in rotating convection. Part 1. Ensemble statistics and dynamical balances. J. Fluid Mech. 391, 151187.
Kadanoff L. P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54, 3439.
Kerr R. M. 1996 Rayleigh number scaling in numerical convection. J. Fluid Mech. 310, 139179.
Leonard A. & Winckelmans G. S. 1999 A tensor-diffusivity subgrid model for large-eddy simulation. Caltech ASCI Tech. Rep. 043.
Lui S.-L. & Xia K.-Q. 1998 Spatial structure of the thermal boundary layer in turbulent convection. Phys. Rev. E 57, 54945503.
du Puits R. Resagk C. Tilgner A. Busse F. H. & Thess A. 2007 Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 572, 231254.
Puthenveettil B. A. & Arakeri J. H. 2005 Plume structure in high-Rayleigh-number convection. J. Fluid Mech. 542, 217249.
Qiu X.-L. & Tong P. 2001 Large-scale velocity structures in turbulent thermal convection. Phys. Rev. E 64, 036304.
Shang X.-D. Qiu X.-L. Tong P. & Xia K.-Q. 2004 Measurements of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 70, 026308.
Shishkina O. & Wagner C. 2006 Analysis of thermal dissipation rates in turbulent Rayleigh–Bénard convection. J. Fluid Mech., 546, 5160.
Shishkina O. & Wagner C. 2007 a A fourth order finite volume scheme for turbulent flow simulations in cylindrical domains. Computers Fluids 36, 484497.
Shishkina O. & Wagner C. 2007 b Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys. Fluids 19, 085107.
Shishkina O. & Wagner C. 2007 c Boundary and interior layers in turbulent thermal convection in cylindrical containers. Intl J. Comput. Sci. Maths 1 360373.
Siggia E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.
Sparrow E. M., Husar R. B. & Goldstein R. J. 1970 Observations and other characteristics of thermals. J. Fluid Mech. 41, 793800.
Verzicco R. & Camussi R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.
Xi H.-D. Lam S. & Xia K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.
Zahn J.-P. 2000 Plumes in stellar convection zones. Ann. NY Acad. Sci. 898, 90104.
Zhou S.-Q. & Xia K.-Q. 2002 Plume statistics in thermal turbulence: mixing of an active scalar. Phys. Rev. Lett. 89, 184502.
Zhou Q., Sun C. & Xia K.-Q. 2007 Morphological evolution of thermal plumes in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 074501.
Zocchi G., Moses E. & Libchaber A. 1990 Coherent structures in turbulent convection, an experimental study. Physica A 166, 387407.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 79 *
Loading metrics...

Abstract views

Total abstract views: 142 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.