Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-08-14T11:23:35.072Z Has data issue: false hasContentIssue false

Analysis of the nonlinear dynamic mechanisms of combustion modes in a rotating detonation combustor

Published online by Cambridge University Press:  08 August 2025

Faxuan Luo
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
Haocheng Wen*
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
Bing Wang*
Affiliation:
School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
*
Corresponding authors: Haocheng Wen, haochengwenson@126.com; Bing Wang, wbing@tsinghua.edu.cn
Corresponding authors: Haocheng Wen, haochengwenson@126.com; Bing Wang, wbing@tsinghua.edu.cn

Abstract

A rotating detonation combustor exhibits corotating $N$-wave modes with $N$ detonation waves propagating in the same direction. These modes and their responses to ignition conditions and disturbances were studied using a surrogate model. Through numerical continuation, a mode curve (MC) is obtained, depicting the relationship between the wave speed of the one-wave mode and a defined baseline of the combustor circumference ($L_{{base}}$) under fixed equation parameters, limited by deflagration and flow choking. The modes’ existence is confirmed by the equivalence between a one-wave mode within a combustor with circumference $L_{{base}}$/$N$ on the MC and an $N$-wave mode in an $L_{{base}}$ combustor. The stability, measured by the real part of the eigenvalue from linear stability analysis (LSA), revealed the dynamic properties. When multiple stable modes exist under the same parameters, ignition conditions with a spatial period of $L_{{base}}$/$N$ are more likely to form $N$-wave modes. An unstable evolution in formed modes, occurs in the dynamics from stable to unstable modes through saddle-node bifurcation and Hopf bifurcation induced by parameter perturbations and from unstable to stable modes induced by state disturbances. Eigenmodes from LSA reveal mechanisms of the unstable evolution, including the effect of secondary deflagration in the unstable one-wave mode and competitive interaction between detonation waves in the unstable multiwave mode, crucial for the combustor to mode transition.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adamson, T.C. & Olsson, G.R. 1967 Performance analysis of a rotating detonation wave rocket engine. Acta Astronaut. 13, 405415.Google Scholar
Åkervik, E., Brandt, L., Henningson, D.S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18 (6), 068102.10.1063/1.2211705CrossRefGoogle Scholar
Anand, V., George, A.S., Driscoll, R. & Gutmark, E. 2015 Characterization of instabilities in a rotating detonation combustor. Intl J. Hydrogen Energy 40 (46), 1664916659.10.1016/j.ijhydene.2015.09.046CrossRefGoogle Scholar
Anand, V., George, A.S., Driscoll, R. & Gutmark, E. 2016 a Investigation of rotating detonation combustor operation with H2-Air mixtures. Intl J. Hydrogen Energy 41 (2), 12811292.10.1016/j.ijhydene.2015.11.041CrossRefGoogle Scholar
Anand, V., George, A.S., Driscoll, R. & Gutmark, E. 2016 b Longitudinal pulsed detonation instability in a rotating detonation combustor. Exp. Therm. Fluid Sci. 41 (2), 12811292.Google Scholar
Anand, V. & Gutmark, E. 2019 Types of low frequency instabilities in rotating detonation combustors. In Active Flow and Combustion Control 2018: Papers Contributed to the Conference Active Flow and Combustion Control 2018, pp. 197213. Springer.10.1007/978-3-319-98177-2_13CrossRefGoogle Scholar
Athmanathan, V., Braun, J., Ayers, Z.M., Fugger, C.A., Webb, A.M., Slipchenko, M.N., Paniagua, G., Roy, S. & Meyer, T.R. 2022 On the effects of reactant stratification and wall curvature in non-premixed rotating detonation combustors. Combust. Flame 240, 112013.CrossRefGoogle Scholar
Bluemner, R., Bohon, M., Nguyen, H.-Q., Paschereit, C.O. & Gutmark, E.J. 2019 Influence of reactant injection parameters on RDC mode of operation. In AIAA Scitech 2019 Forum, pp. 2021. American Institute of Aeronautics and Astronautics.Google Scholar
Bluemner, R., Bohon, M.D., Paschereit, C.O. & Gutmark, E.J. 2018 Single and counter-rotating wave modes in an RDC. In 2018 AIAA Aerospace Sciences Meeting, pp. 1608. American Institute of Aeronautics and Astronautics.Google Scholar
Burke, R., Rezzag, T., Dunn, I., Flores, W. & Ahmed, K. 2021 The effect of premixed stratification on the wave dynamics of a rotating detonation combustor. Intl J. Hydrogen Energy 46 (54), 2781627826.10.1016/j.ijhydene.2021.06.003CrossRefGoogle Scholar
Burr, J.R. & Paulson, E. 2021 Thermodynamic performance results for rotating detonation rocket engine with distributed heat addition using cantera. In AIAA Propulsion and Energy 2021 Forum, pp. 3682. American Institute of Aeronautics and Astronautics.Google Scholar
Bykovskii, F.A., Zhdan, S.A. & Vedernikov, E.F. 2006 Continuous spin detonations. J. Propul. Power 22 (6), 12041216.CrossRefGoogle Scholar
Chacon, F. & Gamba, M. 2019 Study of parasitic combustion in an optically accessible continuous wave rotating detonation engine. In AIAA Scitech 2019 Forum, pp. 0473. American Institute of Aeronautics and Astronautics.Google Scholar
Chao, W., Wei-dong, L., Shi-jie, L., Zhi-yong, L. & Lu-xin, J. 2015 Instantaneous propagation characteristics of continuous rotating detonation wave. J. Aerosp. Power 30 (11), 26002606.Google Scholar
Clavin, P. 2023 One-dimensional mechanism of gaseous deflagration-to-detonation transition. J. Fluid Mech. 974, A46.10.1017/jfm.2023.751CrossRefGoogle Scholar
Dyer, R., Naples, A., Kaemming, T., Hoke, J. & Schauer, F. 2012 Parametric testing of a unique rotating detonation engine design. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, pp. 121. American Institute of Aeronautics and Astronautics.Google Scholar
Faria, L.M., Kasimov, A.R. & Rosales, R.R. 2015 Theory of weakly nonlinear self-sustainedádetonations. J. Fluid Mech. 784, 163198.10.1017/jfm.2015.577CrossRefGoogle Scholar
Feleo, A., Chacon, F. & Gamba, M. 2019 Effects of heat release distribution on detonation properties in a H2/air rotating detonation combustor from OH* chemiluminesence. In AIAA Propulsion and Energy 2019 Forum, pp. 4045. American Institute of Aeronautics and Astronautics.Google Scholar
Fievisohn, R.T. & Yu, K.H. 2017 Steady-state analysis of rotating detonation engine flowfields with the method of characteristics. J. Propul. Power 33 (1), 8999.CrossRefGoogle Scholar
Frolov, S.M., Aksenov, V.S., Ivanov, V.S. & Shamshin, I.O. 2015 Large-scale hydrogen–air continuous detonation combustor. Intl J. Hydrogen Energy 40 (3), 16161623.10.1016/j.ijhydene.2014.11.112CrossRefGoogle Scholar
Fujii, J., Kumazawa, Y., Matsuo, A., Nakagami, S., Matsuoka, K. & Kasahara, J. 2017 Numerical investigation on detonation velocity in rotating detonation engine chamber. Proc. Combust. Inst. 36 (2), 26652672.10.1016/j.proci.2016.06.155CrossRefGoogle Scholar
Gaillard, T., Davidenko, D. & Dupoirieux, F. 2017 Numerical simulation of a rotating detonation with a realistic injector designed for separate supply of gaseous hydrogen and oxygen. Acta Astronaut. 141, 6478.10.1016/j.actaastro.2017.09.011CrossRefGoogle Scholar
Goldin, A.Y. & Kasimov, A.R. 2022 Synchronization of detonations: Arnold tongues and devil’s staircases. J. Fluid Mech. 946, R1.10.1017/jfm.2022.581CrossRefGoogle Scholar
Guangyao, R., Miao, C., Zhaohua, S., Xiangyang, L., Yunzhen, Z. & Jianping, W. 2022 Investigation of counter-rotating shock wave and wave direction control of hollow rotating detonation engine with laval nozzle. Phys. Fluids 34 (5), 056104.Google Scholar
Gupta, P., Schwinn, K., Lodato, G., Slabaugh, C. & Scalo, C. 2018 Numerical investigation of sustained planar detonation waves in a periodic domain. In 2018 Fluid Dynamics Conference, pp. 3240. American Institute of Aeronautics and Astronautics.Google Scholar
H.-C., Wen 2022 Research on stability and pressure-gain performance of rotating detonation combustion fueled by kerosene. PhD thesis, Tsinghua University, Beijing, China.Google Scholar
Houim, R.W. & Fievisohn, R.T. 2017 The influence of acoustic impedance on gaseous layered detonations bounded by an inert gas. Combust. Flame 179, 185198.10.1016/j.combustflame.2017.02.001CrossRefGoogle Scholar
Humble, J., Sardeshmukh, S.V. & Heister, S.D. 2019 Reduced order modeling of rotational detonation engines. In AIAA Scitech 2019 Forum, pp. 0201. American Institute of Aeronautics and Astronautics.Google Scholar
Kato, Y., Ishihara, K., Matsuoka, K., Kasahara, J., Matsuo, A. & Funaki, I. 2016 Study of combustion chamber characteristic length in rotating detonation engine with convergent-divergent nozzle. In 54th AIAA Aerospace Sciences Meeting, pp. 1406. American Institute of Aeronautics and Astronautics.Google Scholar
Ketcheson, D.I., Mandli, K., Ahmadia, A.J., Alghamdi, A., Luna, M.Q.De, Parsani, M., Knepley, M.G. & Emmett, M. 2012 PyClaw: accessible, extensible, scalable tools for wave propagation problems. SIAM J. Sci. Comput. 34 (4), C210C231.10.1137/110856976CrossRefGoogle Scholar
Kindracki, J., Kobiera, A., Wolański, P., Gut, Z., Folusiak, M. & Swiderski, K. 2011 Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures. Prog. Prop. Phys. 2, 555582.CrossRefGoogle Scholar
Koch, J., Kurosaka, M., Knowlen, C. & Kutz, J.N. 2021 Multiscale physics of rotating detonation waves: autosolitons and modulational instabilities. Phys. Rev. E 104 (2), 024210.10.1103/PhysRevE.104.024210CrossRefGoogle ScholarPubMed
Koch, J. & Kutz, J.N. 2020 Modeling thermodynamic trends of rotating detonation engines. Phys. Fluids 32 (12), 126102.10.1063/5.0023972CrossRefGoogle Scholar
Lee, H.I. & Stewart, D.S. 1990 Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 216, 103132.10.1017/S0022112090000362CrossRefGoogle Scholar
Lytle, J.W. 2011 Stability for Traveling Waves. Brigham Young University.Google Scholar
Mizener, A.R. & Lu, F.K. 2016 Preliminary parametric analysis of a rotating detonation engine by analytical methods. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference, pp. 4876. American Institute of Aeronautics and Astronautics.Google Scholar
Naples, A., Hoke, J. & Schauer, F. 2014 Rotating detonation engine interaction with an annular ejector. In 52nd Aerospace Sciences Meeting, pp. 0287. American Institute of Aeronautics and Astronautics.Google Scholar
Nicholls, J.A. & Cullen, R.E. 1964 The feasibility of a rotating detonation wave rocket motor. Tech. Rep. Univ. of Michigan.Google Scholar
Nordeen, C.A., Schwer, D., Schauer, F., Hoke, J., Barber, T. & Cetegen, B. 2014 Thermodynamic model of a rotating detonation engine. Combust. Explos. Shock Waves 50 (5), 568577.10.1134/S0010508214050128CrossRefGoogle Scholar
Paxson, D.E. & Perkins, H.D. 2021 A simple model for rotating detonation rocket engine sizing and performance estimates. In AIAA Scitech 2021 Forum, pp. 0192. American Institute of Aeronautics and Astronautics.Google Scholar
Prakash, S., Fiévet, R., Raman, V., Burr, J. & Yu, K.H. 2020 Analysis of the detonation wave structure in a linearized rotating detonation engine. AIAA J. 58 (12), 50635077.CrossRefGoogle Scholar
Rademacher, J.D., Sandstede, B. & Scheel, A. 2007 Computing absolute and essential spectra using continuation. Physica D: Nonlinear Phenom. 229 (2), 166183.10.1016/j.physd.2007.03.016CrossRefGoogle Scholar
Raman, V., Prakash, S. & Gamba, M. 2023 Nonidealities in rotating detonation engines. Annu. Rev. Fluid Mech. 55 (1), 639674.CrossRefGoogle Scholar
Rankin, B.A., Richardson, D.R., Caswell, A.W., Naples, A.G., Hoke, J.L. & Schauer, F.R. 2017 Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine. Combust. Flame 176, 1222.10.1016/j.combustflame.2016.09.020CrossRefGoogle Scholar
Roy, A., Ferguson, D.H., Sidwell, T., O’Meara, B., Strakey, P., Bedick, C. & Sisler, A. 2017 Experimental study of rotating detonation combustor performance under preheat and back pressure operation. In 55th AIAA Aerospace Sciences Meeting, pp. 1065. American Institute of Aeronautics and Astronautics.Google Scholar
Sandstede, B. 2002 Stability of traveling waves. In Handbook of Dynamical Systems, vol. 2, pp. 9831055. Elsevier.Google Scholar
Sato, T., Chacon, F., White, L., Raman, V. & Gamba, M. 2021 Mixing and detonation structure in a rotating detonation engine with an axial air inlet. Proc. Combust. Inst. 38 (3), 37693776.CrossRefGoogle Scholar
Shaabani-Ardali, L., Sipp, D. & Lesshafft, L. 2017 Time-delayed feedback technique for suppressing instabilities in time-periodic flow. Phys. Rev. Fluids 2 (11), 113904.CrossRefGoogle Scholar
Sharpe, G.J. 1999 Linear stability of pathological detonations. J. Fluid Mech. 401, 311338.CrossRefGoogle Scholar
Sheng, Z., Cheng, M. & Wang, J.-P. 2023 Multi-wave effects on stability and performance in rotating detonation combustors. Phys. Fluids 35 (7), 076119.CrossRefGoogle Scholar
Sherratt, J.A. 2012 Numerical continuation methods for studying periodic traveling wave (wavetrain) solutions of partial differential equations. Appl. Math. Comput. 218 (9), 46844694.Google Scholar
Smith, M.J. & Sherratt, J.A. 2007 The effects of unequal diffusion coefficients on periodic traveling waves in oscillatory reaction–diffusion systems. Physica D 236 (2), 90103.10.1016/j.physd.2007.07.013CrossRefGoogle Scholar
Strogatz, S.H. 2024 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Chapman and Hall/CRC.CrossRefGoogle Scholar
Suchocki, J., Yu, S.-T., Hoke, J., Naples, A., Schauer, F. & Russo, R. 2012 Rotating detonation engine operation. In 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, pp. 119. American Institute of Aeronautics and Astronautics.Google Scholar
Uecker, H. 2021 Numerical Continuation and Bifurcation in Nonlinear PDEs. SIAM.10.1137/1.9781611976618CrossRefGoogle Scholar
Wang, Y.-H. & Wang, J.-P. 2016 Coexistence of detonation with deflagration in rotating detonation engines. Intl J. Hydrogen Energy 41 (32), 1430214309.10.1016/j.ijhydene.2016.06.026CrossRefGoogle Scholar
Wang, Z.-C., Wang, K., Li, Q.-G., Zhu, Y.-Y., Zhao, M.-H. & Fan, W. 2020 Effects of the combustor width on propagation characteristics of rotating detonation waves. Aerosp. Sci. Technol. 105, 106038.10.1016/j.ast.2020.106038CrossRefGoogle Scholar
Wen, H.-C. & Wang, B. 2020 Experimental study of perforated-wall rotating detonation combustors. Combust. Flame 213, 5262.10.1016/j.combustflame.2019.11.028CrossRefGoogle Scholar
Xiao-Jian, H., Xiang-Yang, L. & Jian-Ping, W. 2022 On the mechanisms of the multiplicity and bifurcation of detonation waves in 3D rotating detonation engines. Aerosp. Sci. Technol. 130, 107874.Google Scholar
Xie, Q.-F., Wang, B., Wen, H.-C. & He, W. 2019 Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition. J. Propul. Power 35 (1), 141151.10.2514/1.B37044CrossRefGoogle Scholar
Xie, Q., Wen, H., Li, W., Ji, Z., Wang, B. & Wolanski, P. 2018 Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition. Energy 151, 408419.CrossRefGoogle Scholar
Yao, S.-B., Ma, Z., Zhang, S.-J., Luan, M.-Y. & Wang, J.-P. 2017 Reinitiation phenomenon in hydrogen-air rotating detonation engine. Intl J. Hydrogen Energy 42 (47), 2858828598.10.1016/j.ijhydene.2017.09.015CrossRefGoogle Scholar
Shao, Y.-T., Liu, M. & Wang, J.-P. 2010 Numerical investigation of rotating detonation engine propulsive performance. Combust. Sci. Technol. 182 (11-12), 15861597.10.1080/00102202.2010.497316CrossRefGoogle Scholar
Zahn, A., Knight, E., Anand, V., Jodele, J. & Gutmark, E.J. 2018 Examination of counter-rotating detonation waves using cross-correlation. In 2018 Joint Propulsion Conference, pp. 4568. American Institute of Aeronautics and Astronautics.Google Scholar
Zhang, H.-L., Liu, W.-D. & Liu, S.-J. 2016 Effects of inner cylinder length on H2/air rotating detonation. Intl J. Hydrogen Energy 41 (30), 1328113293.10.1016/j.ijhydene.2016.06.083CrossRefGoogle Scholar