Skip to main content
×
×
Home

Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction

  • Muzio Grilli (a1), Peter J. Schmid (a2), Stefan Hickel (a1) and Nikolaus A. Adams (a1)
Abstract

The unsteady behaviour in shockwave turbulent boundary layer interaction is investigated by analysing results from a large eddy simulation of a supersonic turbulent boundary layer over a compression–expansion ramp. The interaction leads to a very-low-frequency motion near the foot of the shock, with a characteristic frequency that is three orders of magnitude lower than the typical frequency of the incoming boundary layer. Wall pressure data are first analysed by means of Fourier analysis, highlighting the low-frequency phenomenon in the interaction region. Furthermore, the flow dynamics are analysed by a dynamic mode decomposition which shows the presence of a low-frequency mode associated with the pulsation of the separation bubble and accompanied by a forward–backward motion of the shock.

Copyright
Corresponding author
Email address for correspondence: muzio.grilli@aer.mw.tum.de
References
Hide All
1. Adams, N. A. 2000 Direct simulation of the turbulent boundary layer along a compression ramp at and . J. Fluid Mech. 420, 4783.
2. Beresh, S. J., Clemens, N. T. & Dolling, D. S. 2002 Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40, 24122422.
3. Dolling, D. S. & Murphy, M. T. 1983 Unsteadiness of the separation shock wave structure in a supersonic compression ramp flow field. AIAA J. 21, 16281634.
4. Dolling, D. S. & Or, C. T. 1985 Unsteadiness of the shock wave structure in attached and separated compression ramp flows. Exp. Fluids 3, 2432.
5. Dupont, P., Haddad, C. & Debieve, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.
6. Dussauge, J. P., Dupont, P. & Debieve, J. F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10, 8591.
7. Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2006 Effects of upstream boundary layer on the unsteadiness of shock induced separation. J. Fluid Mech. 585, 369394.
8. Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2009 Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J. Fluid Mech. 636, 397425.
9. Hickel, S. 2012 Implicit subgrid-scale modelling for large eddy simulation of compressible flows and shock turbulence interaction Phys. Fluids (submitted).
10. Hickel, S., Adams, N. A. & Domaradzki, J. A. 2006 An adaptive local deconvolution method for implicit LES. J. Comput. Phys. 213, 413436.
11. Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech.
12. Loginov, M., Adams, N. A. & Zheltovodov, A. 2006 Large-eddy simulation of shock-wave/turbulent boundary layer interaction. J. Fluid Mech. 565, 133169.
13. Piponniau, S., Dussauge, J. P., Debieve, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.
14. Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at . Phys. Fluids 8, 117.
15. Pirozzoli, S., Larsson, J., Nichols, J. W., Bernardini, M., Morgan, B. E. & Lele, S. K. 2010 Analysis of unsteady effects in shock/boundary layer interaction. In Center for Turbulence Research Proceedings of the Summer Program. Center for Turbulence Research, Stanford University and NASA Ames Research Center, Stanford, CA.
16. Ringuette, M. J., Martin, M. P. & Smits, A. J. 2006 Characterization of the turbulence structure in supersonic boundary layers using DNS data. AIAA Paper 2006-3539.
17. Rowley, C. W., Mezic, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 113.
18. Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.
19. Schmid, P. J. 2011 Applications of the dynamic mode decomposition to experimental data. Exp. Fluids 50, 11231130.
20. Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to . J. Fluid Mech. 187.
21. Touber, E. & Sandham, N. 2009 Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 79107.
22. Wu, M. & Martin, M. P. 2007 Direct numerical simulation of shockwave and turbulent boundary layer interaction induced by a compression ramp. AIAA J. 45, 879889.
23. Zheltovodov, A. A., Trofimov, V. M., Schülein, E. & Yakovlev, V. N. 1990 An experimental documentation of supersonic turbulent flows in the vicinity of forward- and backward-facing ramps. Tech. Rep. 2030. Inst. Theor. Appl. Mech., USSR Acad. Sci., Novosibirsk.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Movies

Grilli et al. supplementary material
Animation of the reconstructed flow field by the four dominant modes. 11 contours of velocity are shown.

 Video (2.7 MB)
2.7 MB
VIDEO
Movies

Grilli et al. supplementary material
Animation of the reconstructed flow field by the four dominant modes. 11 contours of velocity are shown.

 Video (1.8 MB)
1.8 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed