Skip to main content
    • Aa
    • Aa

Analytical solutions for tsunami runup on a plane beach: single waves, N-waves and transient waves


In the literature it has so far been common practice to consider solitary waves and N-waves (composed of solitary waves) as the appropriate model of tsunamis approaching the shoreline. Unfortunately, this approach is based on a tie between the nonlinearity and the horizontal length scale (or duration) of the wave, which is not realistic for geophysical tsunamis. To resolve this problem, we first derive analytical solutions to the nonlinear shallow-water (NSW) equations for the runup/rundown of single waves, where the duration and the wave height can be specified separately. The formulation is then extended to cover leading depression N-waves composed of a superposition of positive and negative single waves. As a result the temporal variations of the runup elevation, the associated velocity and breaking criteria are specified in terms of polylogarithmic functions. Finally, we consider incoming transient wavetrains generated by monopole and dipole disturbances in the deep ocean. The evolution of these wavetrains, while travelling a considerable distance over a constant depth, is influenced by weak dispersion and is governed by the linear Korteweg–De Vries (KdV) equation. This process is described by a convolution integral involving the Airy function. The runup on the plane sloping beach is then determined by another convolution integral involving the incoming time series at the foot of the slope. A good agreement with numerical model results is demonstrated.

Corresponding author
Email address for correspondence:
Hide All

Present address: SchäfferWaves, Sortedam Dossering 59 D st., DK-2100 Copenhagen Ø, Denmark. Email address:

Hide All
Battjes J. A. 1974 Surf similarity. In Proceedings of the Fourteenth International Coastal Engineering Conference, vol. 1, pp. 466–480. ASCE.
Briggs M. J., Synolakis C. E., Harkins G. S. & Green D. R. 1995 Laboratory experiments of tsunami runup on a circular island. Pure Appl. Geophys. 144 (3/4), 569593.
Carrier G. F. 1971 The dynamics of tsunamis. In Mathematical Problems in the Geophysical Sciences. Proceedings of the Sixth Summer Seminar on Applied Mathematics, Rennselar Polytechnic Institute, Troy, N.Y. 1970. American Mathematical Society.
Carrier G. F. & Greenspan H. P. 1958 Water waves of finite amplitude on a sloping beach. J. Fluid Mech. 17, 97110.
Carrier G. F., Wu T. T. & Yeh H. 2003 Tsunami runup and drawdown on a plane beach, J. Fluid Mech. 475, 7999.
Didenkulova I. I., Kurkin A. A. & Pelinovsky E. N. 2007 Run-up of solitary waves on slopes with different profiles. Atmos. Ocean. Phys. 43 (3), 384390.
Didenkulova I. I., Zahibo N., Kurkin A. A., Levin B. V., Pelinovsky E. N. & Soomere T. 2006 Runup of nonlinearly deformed waves on a coast. Dokl. Earth Sci. 411 (8), 12411243.
Fuhrman D. R. & Bingham H. B. 2004 Numerical solutions of fully nonlinear and highly dispersive Boussinesq equations in two horizontal dimensions. Intl J. Numer. Methods Fluids 44, 231255.
Fuhrman D. R. & Madsen P. A. 2008 Simulation of nonlinear wave runup with a high-order Boussinesq model. Coast. Engng 55 (2), 139154.
Geist E. L. 1999 Local tsunamis and earthquake source parameters. Adv. Geophys. 39, 117209.
Geist E. L. & Yoshioka S. 1996 Source parameters controlling the generation and propagation of potential local tsunamis along the Cascadia Margin. Nat. Hazards 13, 151177.
Gjevik B. & Pedersen G. 1981 Run-up of long waves on an inclined plane. Preprint Series Institute of Mathematics University of Oslo, 25 pp.
Goring D. G. 1978 Tsunamis – the propagation of long waves onto a shelf. Tech. Rep. Kh-R-38. W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology.
Green G. 1838 On the motion of waves in a variable canal of small depth and width. Trans. Camb. Phil. Soc. 6, 457462.
Jensen A., Pedersen G. K. & Wood D. J. 2003 An experimental study of wave run-up at a steep beach. J. Fluid Mech. 486, 161188.
Kânoğlu U. 2004 Nonlinear evolution and runup-rundown of long waves over a sloping beach. J. Fluid Mech. 513, 363372.
Keller J. B. & Keller H. B. 1964 Water wave run-up on a beach. ONR Research Rep. Contract NONR-3828(00). Department of the Navy, Washington, DC, p. 40.
Kelly J. J. 2006 Graduate Mathematical Physics. Wiley-VCH Verlag, p. 466.
Lamb H. 1932 Hydrodynamics. Cambridge University Press.
Levinson N. & Redheffer R. M. 1970 Complex Variables. Holden-Day, p. 430.
Lewin L. 1980 Polylogarithms and Associated Functions. North-Holland.
Lewin L. 1991 Structural Properties of Polylogarithms. American Mathematical Society.
Lewy H. 1946 Water waves on sloping beaches. Bull. Am. Math. Soc. 52, 737755.
Li Y. & Raichlen F. 2001 Solitary wave runup on plane slopes. J. Waterway Port Coast. Ocean Engng 127 (1), 3344.
Li Y. & Raichlen F. 2002 Non-breaking and breaking solitary wave run-up. J. Fluid Mech. 456, 295318.
Li Y. & Raichlen F. 2003 Energy balance model for breaking solitary wave run-up. J. Waterway Port Coast. Ocean Engng 47, 4759.
Liu P. L.-F., Cho Y.-S., Briggs M. J., Kânoğlu U. & Synolakis C. E. 1995 Runup of solitary waves on a circular island. J. Fluid Mech. 302, 259285.
Lynett P., Sitanggang K. I., Fernández E. J. R., Wang X., Zhou H., Liu P. L.-F., Mercado A., Teng M. & von Hillebrandt-Andrade C. G. 2008 Experimental investigation into three-dimensional long wave breaking. In Proceedings of the Thirty-First International Conference on Coastal Engineering, pp. 1326–1336. Hamburg, ASCE.
Madsen P. A., Bingham H. B. & Liu H. 2002 A new Boussinesq method for fully nonlinear waves from shallow to deep water. J. Fluid Mech. 462, 130.
Madsen P. A. & Fuhrman D. R. 2008 Runup of tsunamis and long waves in terms of surf-similarity. Coast. Engng 55 (3), 209224.
Madsen P. A., Fuhrman D. R. & Schäffer H. A. 2008 On the solitary wave paradigm for tsunamis. J. Geophys. Res. 113, C12012, 122.
Madsen P. A., Fuhrman D. R. & Wang B. 2006 A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry. Coast. Engng 53, 487504.
Mathews J. H. & Howell R. W. 2001 Complex Analysis for Mathematics and Engineering. Jones and Bartlett, p. 600.
Mei C. C., Yue D. K.-P. & Stiassnie M. 2005 Theory and Applications of Ocean Surface Waves. World Scientific.
Pelinovsky E. N. & Mazova R. K. 1992 Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Nat. Hazards 6, 227249.
Synolakis C. E. 1987 The runup of solitary waves. J. Fluid Mech. 185, 523545.
Synolakis C. E. & Bernard E. N. 2006 Tsunami science before and beyond Boxing Day 2004. Phil. Trans. R. Soc. A 364, 22312265.
Synolakis C. E. & Deb M. K. 1988 On the maximum runup of cnoidal waves. In Proceedings of ASCE, 21st Conf. Coastal Engineering, Costa del Sol, Malaga, Spain, pp. 553565.
Synolakis C. E., Deb M. K. & Skjelbreia J. E. 1988 The anomaleous behaviour of the runup of cnoidal waves. Phys. Fluids 31 (1), 35.
Synolakis C. E., Okal E. A. & Bernard E. N. 2005 The megatsunami of December 26, 2004. Bridge Natl Acad. Engng 35 (2), 2635.
Tadepalli S. & Synolakis C. E. 1994 The run-up of N-waves on sloping beaches. Proc. R. Soc. Lond. A 445, 99112.
Tadepalli S. & Synolakis C. E. 1996 Model for the leading waves of tsunamis, Phys. Rev. Lett. 77, 21412145.
Tonkin S., Yeh H., Kato F. & Sato S. 2003 Tsunami scour around a cylinder. J. Fluid Mech 496, 165192.
Weisstein E. W. 2005 Analytic continuation and polylogarithm. Mathworld - A Wolfram Web Resource.
Whitham G. B. 1974 Linear and Nonlinear Waves. Pure and Applied Mathematics, Wiley-Interscience.
Wood D. C. 1992 The computation of Polylogarithms. Tech. Rep. 15–92. University of Kent Computing Laboratory, University of Kent, Canterbury, UK, p. 20.
Yeh H., Liu P. L.-F., Briggs M. & Synolakis C. E. 1994 Propagation and amplification of tsunamis at coastal boundaries. Nature 372, 353355.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 110 *
Loading metrics...

Abstract views

Total abstract views: 331 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th October 2017. This data will be updated every 24 hours.