Hostname: page-component-6bb9c88b65-vpjdr Total loading time: 0 Render date: 2025-07-17T13:11:52.230Z Has data issue: false hasContentIssue false

Angstrom-scale ionic streaming when the electrical double-layer concept fails

Published online by Cambridge University Press:  16 July 2025

Jiajia Lu
Affiliation:
School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, PR China
Shuyong Luan
Affiliation:
National Key Laboratory of Aircraft Configuration Design, School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China
Shenghui Guo
Affiliation:
School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, PR China
Libing Duan
Affiliation:
School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, PR China
Guanghua Du
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
Yanbo Xie*
Affiliation:
National Key Laboratory of Aircraft Configuration Design, School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi’an 710072, PR China
*
Corresponding author: Yanbo Xie, ybxie@nwpu.edu.cn

Abstract

A knowledge gap exists for flows and transport phenomena at the angstrom scale when the Poisson–Nernst–Planck equation based on the concept of the electrical double layer fails. We discovered that streaming conductance becomes pressure-dependent in angstrom channels using latent-track membranes. The streaming current emerges only when the applied pressure exceeds a threshold value, which is inconsistent with the existing knowledge as a constant. With increasing channel size, we found that the pressure-dependent streaming conductance phenomenon weakens and vanishes into a constant streaming conductance regime when the mean channel radius exceeds $\sim$2 nm. The effective surface potential derived from the streaming conductance that divides conduction anomalously increases as the channel narrows. We suspect that the pressure-dependent streaming current is due to the reinforced Coulomb interaction between counterions and deprotonated carboxyl groups at the surface, which is close to the ion channel but different from that of electrified two-dimensional materials. The streaming current emerged due to hydrodynamic friction when the counterions were released from the surface. We approximated the stochastic process of counterion dissociation by a one-dimensional Kramer escape theory framework and defined the Damk$\ddot {\mathrm{o}}$hler number to describe the transition from the nonlinear streaming conductance regime to the linear regime as functions of applied pressure and channel radius and well explained the enhanced effective surface potential in confinement.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adla, A., Fuess, H. & Trautmann, C. 2003 Characterization of heavy ion tracks in polymers by transmission electron microscopy. J. Polymer Sci. Part B: Polymer Phys. 41 (22), 28922901.10.1002/polb.10614CrossRefGoogle Scholar
Alkhadra, M.A., et al. 2022 Electrochemical methods for water purification, ion separations, and energy conversion. Chem. Rev. 122 (16), 1354713635.10.1021/acs.chemrev.1c00396CrossRefGoogle ScholarPubMed
Aluru, N.R., et al. 2023 Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123 (6), 27372831.10.1021/acs.chemrev.2c00155CrossRefGoogle ScholarPubMed
Apel, P.Yu, Korchev, YuE., Siwy, Z., Spohr, R. & Yoshida, M. 2001 Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instrum. Meth. Phys. Res. B 184 (3), 337346.10.1016/S0168-583X(01)00722-4CrossRefGoogle Scholar
Apel, P.Yu, Blonskaya, I.V., Ivanov, O.M., Kristavchuk, O.V., Nechaev, A.N., Olejniczak, K., Orelovich, O.L., Polezhaeva, O.A. & Dmitriev, S.N. 2022 Do the soft-etched and UV-track membranes actually have uniform cylindrical subnanometer channels? Radiat. Phys. Chem. 198, 110266.10.1016/j.radphyschem.2022.110266CrossRefGoogle Scholar
Bazant, M.Z. &Squires, T.M. 2004 Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92 (6), 066101.10.1103/PhysRevLett.92.066101CrossRefGoogle ScholarPubMed
Bazant, M.Z. & Squires, T.M. 2010 Induced-charge electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 15 (3), 203213.10.1016/j.cocis.2010.01.003CrossRefGoogle Scholar
Behrens, S.H. & Grier, D.G. 2001 The charge of glass and silica surfaces. J. Chem. Phys. 115 (14), 67166721.10.1063/1.1404988CrossRefGoogle Scholar
Bocquet, L. & Charlaix, E. 2010 Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39 (3), 10731095.10.1039/B909366BCrossRefGoogle ScholarPubMed
Bonthuis, D.J. & Netz, R.R. 2012 Unraveling the combined effects of dielectric and viscosity profiles on surface capacitance, electro-osmotic mobility, and electric surface conductivity. Langmuir 28 (46), 1604916059.10.1021/la3020089CrossRefGoogle ScholarPubMed
Cao, Y., Zhou, W., Shen, C., Qiu, H. & Guo, W. 2024 Proton coulomb blockade effect involving covalent oxygen-hydrogen bond switching. Phys. Rev. Lett. 132 (18), 188401.10.1103/PhysRevLett.132.188401CrossRefGoogle ScholarPubMed
Catalano, J. & Bentien, A. 2014 Influence of temperature on the electrokinetic properties and power generation efficiency of nafion® 117 membranes. J. Power Sources 262, 192200.10.1016/j.jpowsour.2014.03.042CrossRefGoogle Scholar
Delgado, Á.V., González-Caballero, F., Hunter, R.J., Koopal, L.K. & Lyklema, J. 2007 Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309 (2), 194224.10.1016/j.jcis.2006.12.075CrossRefGoogle ScholarPubMed
Emmerich, T., Vasu, K.S., Niguès, A., Keerthi, A., Radha, B., Siria, A. & Bocquet, L. 2022 Enhanced nanofluidic transport in activated carbon nanoconduits. Nat. Mater. 21 (6), 696702.10.1038/s41563-022-01229-xCrossRefGoogle ScholarPubMed
Esfandiar, A., Radha, B., Wang, F.C., Yang, Q., Hu, S., Garaj, S., Nair, R.R., Geim, A.K. & Gopinadhan, K. 2017 Size effect in ion transport through angstrom-scale slits. Science 358 (6362), 511513.10.1126/science.aan5275CrossRefGoogle ScholarPubMed
Faucher, S., et al. 2019 Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123 (35), 2130921326.10.1021/acs.jpcc.9b02178CrossRefGoogle Scholar
Feng, J., Liu, K., Graf, M., Dumcenco, D., Kis, A., Di Ventra, M. & Radenovic, A. 2016 Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15 (8), 850855.10.1038/nmat4607CrossRefGoogle ScholarPubMed
Fumagalli, L., et al. 2018 Anomalously low dielectric constant of confined water. Science 360 (6395), 13391342.10.1126/science.aat4191CrossRefGoogle ScholarPubMed
Gillespie, D. 2012 High energy conversion efficiency in nanofluidic channels. Nano Lett. 12 (3), 14101416.10.1021/nl204087fCrossRefGoogle ScholarPubMed
Gillespie, D., Khair, A.S., Bardhan, J.P. & Pennathur, S. 2011 Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory. J. Colloid Interface Sci. 359 (2), 520529.10.1016/j.jcis.2011.03.088CrossRefGoogle ScholarPubMed
Guo, Z., Li, F., Wu, X., Liang, Z., Junaid, M., Xie, J., Lu, L., Duan, J., Liu, J. & Yao, H. 2024 Efficient ion sieving and ion transport properties in sub-nanoporous polyetherimide membranes. Desalination 573, 117192.10.1016/j.desal.2023.117192CrossRefGoogle Scholar
Hartkamp, R., Biance, A.-L., Fu, L., Dufrêche, J.F., Bonhomme, O., Joly, L. 2018 Measuring surface charge: why experimental characterization and molecular modeling should be coupled. Curr. Opin. Colloid In 37, 101114.10.1016/j.cocis.2018.08.001CrossRefGoogle Scholar
van der Heyden, F.H.J., Stein, D., Besteman, K., Lemay, S.G. & Dekker, C. 2006 Charge inversion at high ionic strength studied by streaming currents. Phys. Rev. Lett. 96 (22), 224502.10.1103/PhysRevLett.96.224502CrossRefGoogle ScholarPubMed
van der Heyden, F.H.J., Stein, D. & Dekker, C. 2005 Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95 (11), 116104.10.1103/PhysRevLett.95.116104CrossRefGoogle Scholar
Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. & Bakajin, O. 2006 Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312 (5776), 10341037.10.1126/science.1126298CrossRefGoogle ScholarPubMed
Itoh, Y., et al. 2022 Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science 376 (6594), 738743.10.1126/science.abd0966CrossRefGoogle ScholarPubMed
Kavokine, N., Bocquet, M.-L. & Bocquet, L. 2022 Fluctuation-induced quantum friction in nanoscale water flows. Nature 602 (7895), 8490.10.1038/s41586-021-04284-7CrossRefGoogle ScholarPubMed
Kavokine, N., Marbach, S., Siria, A., Bocquet, L. 2019 Ionic Coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 14 (6), 573578.10.1038/s41565-019-0425-yCrossRefGoogle ScholarPubMed
Keerthi, A., Goutham, S., You, Y., Iamprasertkun, P., Dryfe, R.A.W., Geim, A.K. & Radha, B. 2021 Water friction in nanofluidic channels made from two-dimensional crystals. Nat. Commun. 12 (1), 3092.10.1038/s41467-021-23325-3CrossRefGoogle ScholarPubMed
Kim, Y.W. & Netz, R.R. 2006 Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction. J. Chem. Phys. 124 (11), 114709.10.1063/1.2177659CrossRefGoogle ScholarPubMed
Li, X., et al. 2019 Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun. 10 (1), 2490.10.1038/s41467-019-10420-9CrossRefGoogle ScholarPubMed
Li, Z., Misra, R.P., Li, Y., Yao, Y.-C., Zhao, S., Zhang, Y., Chen, Y., Blankschtein, D. & Noy, A. 2023 Breakdown of the Nernst–Einstein relation in carbon nanotube porins. Nat. Nanotechnol. 18 (2), 177183.10.1038/s41565-022-01276-0CrossRefGoogle ScholarPubMed
Lyklema, J. 2003 Electrokinetics after smoluchowski. Colloids Surf. A: Physicochem. Engng Aspects 222 (1–3), 514.10.1016/S0927-7757(03)00217-6CrossRefGoogle Scholar
Marcotte, A., Mouterde, T., Niguès, A., Siria, A. & Bocquet, L. 2020 Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19 (10), 10571061.10.1038/s41563-020-0726-4CrossRefGoogle ScholarPubMed
McEldrew, M., Goodwin, Z.A.H., Kornyshev, A.A. & Bazant, M.Z. 2018 Theory of the double layer in water-in-salt electrolytes. J. Phys. Chem. Lett. 9 (19), 58405846.10.1021/acs.jpclett.8b02543CrossRefGoogle ScholarPubMed
Mo, D., Liu, J.D., Duan, J.L., Yao, H.J., Latif, H., Cao, D.L., Chen, Y.H., Zhang, S.X., Zhai, P.F. & Liu, J. 2014 Fabrication of different pore shapes by multi-step etching technique in ion-irradiated PET membranes. Nuclear Instrum. Meth. Phys. Res. B 333, 5863.10.1016/j.nimb.2014.04.011CrossRefGoogle Scholar
Mouterde, T., Keerthi, A., Poggioli, A.R., Dar, S.A., Siria, A., Geim, A.K., Bocquet, L. & Radha, B. 2019 Molecular streaming and its voltage control in Ångström-scale channels. Nature 567 (7746), 8790.10.1038/s41586-019-0961-5CrossRefGoogle ScholarPubMed
Noskov, S.Y., Berneche, S. & Roux, B. 2004 Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431 (7010), 830834.10.1038/nature02943CrossRefGoogle ScholarPubMed
Olthuis, W., Schippers, B., Eijkel, J. & van den Berg, A. 2005 Energy from streaming current and potential. Sensors Actuators B: Chemical 111, 385389.10.1016/j.snb.2005.03.039CrossRefGoogle Scholar
Østedgaard-Munck, D.N., Catalano, J., Kristensen, M.B. & Bentien, A. 2017 Membrane-based electrokinetic energy conversion. Mater. Today Energy 5, 118125.10.1016/j.mtener.2017.06.001CrossRefGoogle Scholar
Radha, B., et al. 2016 Molecular transport through capillaries made with atomic-scale precision. Nature 538 (7624), 222225.10.1038/nature19363CrossRefGoogle ScholarPubMed
Robin, P., et al. 2023 Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379 (6628), 161167.10.1126/science.adc9931CrossRefGoogle ScholarPubMed
Robin, P., Kavokine, N. & Bocquet, L. 2021 Modeling of emergent memory and voltage spiking in ionic transport through Angstrom-scale slits. Science 373 (6555), 687691.10.1126/science.abf7923CrossRefGoogle ScholarPubMed
Schauries, D., Mota-Santiago, P., Gilbert, E.P., Kirby, N., Trautmann, C. & Kluth, P. 2018 Structure, morphology and annealing behavior of ion tracks in polycarbonate. Eur. Polym. J. 108, 406411.10.1016/j.eurpolymj.2018.09.025CrossRefGoogle Scholar
Shi, D., Wang, W., Liang, Y., Duan, L., Du, G. & Xie, Y. 2023 Ultralow energy consumption Angstrom-fluidic memristor. Nano Lett. 23 (24), 1166211668.10.1021/acs.nanolett.3c03518CrossRefGoogle ScholarPubMed
Siria, A., Poncharal, P., Biance, A.-L., Fulcrand, Rémy, Blase, X., Purcell, S.T. & Bocquet, L. 2013 Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494 (7438), 455458.10.1038/nature11876CrossRefGoogle Scholar
Storey, B.D. & Bazant, M.Z. 2012 Effects of electrostatic correlations on electrokinetic phenomena. Phys. Rev. E–Stat., Nonlinear Soft Matter Phys. 86 (5), 056303.10.1103/PhysRevE.86.056303CrossRefGoogle ScholarPubMed
Tan, R., et al. 2020 Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19 (2), 195202.10.1038/s41563-019-0536-8CrossRefGoogle ScholarPubMed
Teber, S. 2005 Translocation energy of ions in nano-channels of cell membranes. J. Stat. Mech.: Theory Exp. 2005 (07), P07001P07001.10.1088/1742-5468/2005/07/P07001CrossRefGoogle Scholar
Wang, L., Boutilier, M.S.H., Kidambi, P.R., Jang, D., Hadjiconstantinou, N.G. & Karnik, R. 2017 Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12 (6), 509522.10.1038/nnano.2017.72CrossRefGoogle ScholarPubMed
Wang, P., et al. 2018 Ultrafast ion sieving using nanoporous polymeric membranes. Nat. Commun. 9 (1), 569.10.1038/s41467-018-02941-6CrossRefGoogle ScholarPubMed
Wen, Q., et al. 2016 Highly selective ionic transport through subnanometer pores in polymer films. Adv. Funct. Mater. 26 (32), 57965803.10.1002/adfm.201601689CrossRefGoogle Scholar
Werner, C., Zimmermann, R. & Kratzmüller, T. 2001 Streaming potential and streaming current measurements at planar solid/liquid interfaces for simultaneous determination of zeta potential and surface conductivity. Colloids Surf. A: Physicochem. Engng Aspects 192 (1–3), 205213.10.1016/S0927-7757(01)00725-7CrossRefGoogle Scholar
Xie, Y., Fu, L., Niehaus, T. & Joly, L. 2020 Liquid-solid slip on charged walls: the dramatic impact of charge distribution. Phys. Rev. Lett. 125 (1), 014501.10.1103/PhysRevLett.125.014501CrossRefGoogle ScholarPubMed
Xie, Y., Shi, D., Wang, W. & Wang, Z. 2023 Surface-charge governed ionic blockade in Angstrom-scale latent-track channels. Nanoscale 15 (21), 95609566.10.1039/D3NR01156ACrossRefGoogle ScholarPubMed
Xu, D., Yan, M. & Xie, Y. 2024 Energy harvesting from water streaming at charged surface. Electrophoresis 45 (3–4), 244265.10.1002/elps.202300102CrossRefGoogle ScholarPubMed
Xue, G., et al. 2017 Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12 (4), 317321.10.1038/nnano.2016.300CrossRefGoogle ScholarPubMed
Xue, S., Yeh, L.-H., Ma, Y. & Qian, S. 2014 Tunable streaming current in a pH-regulated nanochannel by a field effect transistor. J. Phys. Chem. C 118 (12), 60906099.10.1021/jp500996bCrossRefGoogle Scholar
Yang, G., Qian, Y., Liu, D., Wang, L., Ma, Y., Sun, J., Su, Y., Jarvis, K., Wang, X. & Lei, W. 2022 Simultaneous electrokinetic energy conversion and organic molecular sieving by two-dimensional confined nanochannels. Chem. Engng J. 446, 136870.10.1016/j.cej.2022.136870CrossRefGoogle Scholar
Yaroshchuk, A. & Luxbacher, T. 2010 Interpretation of electrokinetic measurements with porous films: role of electric conductance and streaming current within porous structure. Langmuir 26 (13), 1088210889.10.1021/la100777zCrossRefGoogle ScholarPubMed
Zhang, J., Kamenev, A. & Shklovskii, B.I. 2005 Conductance of ion channels and nanopores with charged walls: a toy model. Phys. Rev. Lett. 95 (14), 148101.10.1103/PhysRevLett.95.148101CrossRefGoogle Scholar
Zhou, W., Guo, Y., Zhang, Z., Guo, W. & Qiu, H. 2023 Field-induced hydration shell reorganization enables electro-osmotic flow in nanochannels. Phys. Rev. Lett. 130 (8), 084001.10.1103/PhysRevLett.130.084001CrossRefGoogle ScholarPubMed
Zimmermann, R., Dukhin, S. & Werner, C. 2001 Electrokinetic measurements reveal interfacial charge at polymer films caused by simple electrolyte ions. J. Phys. Chem. B 105 (36), 85448549.10.1021/jp004051uCrossRefGoogle Scholar
Zwolak, M., Lagerqvist, J. & Di Ventra, M. 2009 Quantized ionic conductance in nanopores. Phys. Rev. Lett. 103 (12), 128102.10.1103/PhysRevLett.103.128102CrossRefGoogle ScholarPubMed
Supplementary material: File

Lu et al. supplementary material

Lu et al. supplementary material
Download Lu et al. supplementary material(File)
File 715.2 KB