Hostname: page-component-cb9f654ff-9b74x Total loading time: 0 Render date: 2025-09-08T06:18:16.961Z Has data issue: false hasContentIssue false

Anomalous Reynolds stress and dynamic mechanisms in two-dimensional elasto-inertial turbulence of viscoelastic channel flow

Published online by Cambridge University Press:  04 September 2025

Haotian Cheng
Affiliation:
State Key Laboratory of Engine, Tianjin University, Tianjin 300350, PR China
Hongna Zhang*
Affiliation:
State Key Laboratory of Engine, Tianjin University, Tianjin 300350, PR China
Wenhua Zhang*
Affiliation:
State Key Laboratory of Engine, Tianjin University, Tianjin 300350, PR China
Suming Wang
Affiliation:
State Key Laboratory of Engine, Tianjin University, Tianjin 300350, PR China
Xiaobin Li
Affiliation:
State Key Laboratory of Engine, Tianjin University, Tianjin 300350, PR China
Yuke Li
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, PR China National Key Laboratory of Ship Structural Safety, Harbin, Heilongjiang 150001, PR China
Feng-chen Li
Affiliation:
State Key Laboratory of Engine, Tianjin University, Tianjin 300350, PR China
*
Corresponding authors: Hongna Zhang, hongna@tju.edu.cn; Wenhua Zhang, zhangwh2022@tju.edu.cn
Corresponding authors: Hongna Zhang, hongna@tju.edu.cn; Wenhua Zhang, zhangwh2022@tju.edu.cn

Abstract

Elasto-inertial turbulence (EIT) has been demonstrated to be able to sustain in two-dimensional (2-D) channel flow; however the systematic investigations on 2-D EIT remain scarce. To address this gap, this study conducts direct numerical simulations of 2-D EIT at a modest Reynolds number ($Re=2000$) to examine its statistical characteristics and dynamic mechanisms. Meanwhile, this paper explores the similarities and differences between 2-D EIT with the maximum drag reduction (MDR) state in three-dimensional (3-D) flow. We demonstrate that statistical characteristics of 2-D EIT follow distinct trends compared to those in viscoelastic drag-reducing turbulence as nonlinear elasticity increases. These differences can be attributed to two different underlying dynamical processes: the gradual suppression of inertial turbulence in 3-D flow, and the progressive enhancement of EIT in 2-D flow. Also, we present the role of pressure, energy budget and spectral characteristics of 2-D EIT, which show significant similarities to those in the MDR state, thus providing compelling evidence for the 2-D nature of EIT. More strikingly, we identify an anomalous Reynolds stress in 2-D EIT that contributes negatively to flow resistance, which differs from the extremely small but positive Reynolds stress observed in the MDR state. Although with small values of Reynolds stress, the correlation analysis indicates clearly moderate positive correlation between the streamwise and normalwise velocity fluctuations rather than their being uncorrelated. Moreover, quadrant analysis of velocity fluctuations reveals the predominance of motions in the first and third quadrants, which are closely associated with the typical polymer extension sheet-like structures.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Beneitez, M., Page, J., Dubief, Y. & Kerswell, R.R. 2024 a Multistability of elasto-inertial two-dimensional channel flow. J. Fluid Mech. 981, A30.10.1017/jfm.2024.50CrossRefGoogle Scholar
Beneitez, M., Page, J., Dubief, Y. & Kerswell, R.R. 2024 b Transition route to elastic and elasto-inertial turbulence in polymer channel flows. Phys. Rev. Fluids 9, 123302.10.1103/PhysRevFluids.9.123302CrossRefGoogle Scholar
Beneitez, M., Page, J. & Kerswell, R.R. 2023 Polymer diffusive instability leading to elastic turbulence in plane Couette flow. Phys. Rev. Fluids 8, L101901.Google Scholar
Berti, S., Bistagnino, A., Boffetta, G., Celani, A. & Musacchio, S. 2008 Two-dimensional elastic turbulence. Phys. Rev. E. 77 (5), 055306.10.1103/PhysRevE.77.055306CrossRefGoogle ScholarPubMed
Bird, R., Dotson, P. & Johnson, N. 1980 Polymer solution rheology based on a finitely extensible beadspring chain model. J. Non-Newtonian Fluid Mech. 7 (2), 213235.10.1016/0377-0257(80)85007-5CrossRefGoogle Scholar
Boulafentis, T., Lacassagne, T., Cagney, N. & Balabani, S. 2024 Coherent structures of elastoinertial instabilities in Taylor–Couette flows. J. Fluid Mech. 986, A27.10.1017/jfm.2024.163CrossRefGoogle Scholar
Cai, W.H., Li, F.C., Zhang, H.N., Li, X.B., Yu, B., Wei, J.J., Kawaguchi, Y. & Hishida, K. 2009 Study on the characteristics of turbulent drag-reducing channel flow by particle image velocimetry combining with proper orthogonal decomposition analysis. Phys. Fluids 21 (11), 115103.10.1063/1.3263706CrossRefGoogle Scholar
Choueiri, G.H., Lopez, J.M. & Hof, B. 2018 Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120, 124501.10.1103/PhysRevLett.120.124501CrossRefGoogle ScholarPubMed
Choueiri, G.H., Lopez, J.M., Varshney, A., Sankar, S. & Hof, B. 2021 Experimental observation of the origin and structure of elastoinertial turbulence. Proc. Natl Acad. Sci. 118 (45), e2102350118.CrossRefGoogle ScholarPubMed
Couchman, M.M.P., Beneitez, M., Page, J. & Kerswell, R.R. 2024 Inertial enhancement of the polymer diffusive instability. J. Fluid Mech. 981 A2.CrossRefGoogle Scholar
Dubief, Y., Page, J., Kerswell, R.R., Terrapon, V.E. & Steinberg, V. 2022 First coherent structure in elasto-inertial turbulence. Phys. Rev. Fluids 7, 073301.10.1103/PhysRevFluids.7.073301CrossRefGoogle Scholar
Dubief, Y., Terrapon, V.E. & Hof, B. 2023 Elasto-inertial turbulence. Annu. Rev. Fluid Mech. 55, 675705.10.1146/annurev-fluid-032822-025933CrossRefGoogle Scholar
Dubief, Y., Terrapon, V.E. & Julio, S. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids. 25, 110817.CrossRefGoogle ScholarPubMed
Dubief, Y. & White, C. 2011 Elastic turbulence in high Reynolds number polymer drag reduced flows. In APS Division of Fluid Dynamics Meeting.Google Scholar
Dubief, Y., White, C., Shaqfeh, E.S.G. & Terrapon, V.E. 2010 Polymer Maximum Drag Reduction: A Unique Transitional State. In Annual Research Briefs, pp. 395–404. Stanford, CA: Cent. Turbul. Res.Google Scholar
Foggi Rota, G., Amor, C., Le Clainche, S. & Rosti, M.E. 2024 Unified view of elastic and elasto-inertial turbulence in channel flows at low and moderate Reynolds numbers. Phys. Rev. Fluids 9, L122602.10.1103/PhysRevFluids.9.L122602CrossRefGoogle Scholar
Fouxon, A. & Lebedev, V. 2003 Spectra of turbulence in dilute polymer solutions. Phys. Fluids. 15, 20602072.CrossRefGoogle Scholar
Garg, P., Chaudhary, I., Khalid, M., Shankar, V. & Subramanian, G. 2018 Viscoelastic pipe flow is linearly unstable. Phys. Rev. Lett. 121, 024502.10.1103/PhysRevLett.121.024502CrossRefGoogle ScholarPubMed
Gillissen, J.J.J. 2019 Two-dimensional decaying elastoinertial turbulence. Phys. Rev. Lett. 123 (14), 144502.10.1103/PhysRevLett.123.144502CrossRefGoogle ScholarPubMed
Graham, M.D. 2014 Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids. 26 (10), 101301.10.1063/1.4895780CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405 (6782), 5355.CrossRefGoogle Scholar
Groisman, A. & Steinberg, V. 2004 Elastic turbulence in curvilinear flows of polymer solutions. New J. Phys. 6 (1), 29.10.1088/1367-2630/6/1/029CrossRefGoogle Scholar
Guan, X.L., Yao, S.Y. & Jiang, N. 2013 A study on coherent structures and drag-reduction in the wall turbulence with polymer additives by TRPIV. Acta Mechanica Sin. 29, 485493.10.1007/s10409-013-0035-0CrossRefGoogle Scholar
Hof, B., Samanta, D. & Wagner, C. 2011 The maximum drag reduction asymptote. Abstract presented at APS Division of Fluid Dynamics Meeting, Baltimore, MD, Nov. 20–22, Abstr. M8-005.Google Scholar
Khalid, M., Chaudhary, I., Garg, P., Shankar, V. & Subramanian, G. 2021 The centre-mode instability of viscoelastic plane Poiseuille flow. J. Fluid Mech. 915, A43.10.1017/jfm.2021.60CrossRefGoogle Scholar
Khalid, M., Shankar, V. & Subramanian, G. 2021 Continuous pathway between the elasto-inertial and elastic turbulent states in viscoelastic channel flow. Phys. Rev. Lett. 127, 134502.10.1103/PhysRevLett.127.134502CrossRefGoogle ScholarPubMed
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.10.1017/S0022112089002090CrossRefGoogle Scholar
Lellep, M., Linkmann, M. & Morozov, A. 2024 Purely elastic turbulence in pressure-driven channel flows. Proc. Natl Acad. Sci. 121 (9), e2318851121.10.1073/pnas.2318851121CrossRefGoogle ScholarPubMed
Lu, S.S. & Willmarth, W.W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60 (3), 481511.CrossRefGoogle Scholar
Min, T., Choi, H. & Yoo, J.Y. 2003 Maximum drag reduction in a turbulent channel flow by polymer additives. J. Fluid Mech. 492, 91100.CrossRefGoogle Scholar
Ostwald, W. & Auerbach, R. 1926 Ueber die Viskosität kolloider Lösungen im Struktur-, Laminar- und Turbulenzgebiet. Kolloid-Zeitschrift 38, 261280.10.1007/BF01460846CrossRefGoogle Scholar
Page, J., Dubief, Y. & Kerswell, R.R. 2020 Exact travelling wave solutions in viscoelastic channel flow. Phys. Rev. Lett. 125, 154501.10.1103/PhysRevLett.125.154501CrossRefGoogle ScholarPubMed
Ptasinski, P.K., Boersma, B.J., Nieuwstadt, F.T.M., Hulsen, M.A., Van den Brule, B.H.A.A. & Hunt, J.C.R. 2003 Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490, 251291.10.1017/S0022112003005305CrossRefGoogle Scholar
Samanta, D., Dubief, Y., Holzner, M., Schafer, C., Morozov, A.N., Wagner, C. & Hof, B. 2013 Elasto-inertial turbulence. Proc. Natl Acad. Sci. 110, 10557.10.1073/pnas.1219666110CrossRefGoogle ScholarPubMed
Shekar, A., McMullen, R., McKeon, B. & Graham, M. 2020 Self-sustained elastoinertial Tollmien–Schlichting waves. J. Fluid Mech. 897, A3.CrossRefGoogle Scholar
Shekar, A., McMullen, R.M., McKeon, B.J. & Graham, M.D. 2021 Tollmien–Schlichting route to elastoinertial turbulence in channel flow. Rev. Fluids. 6, 093301.CrossRefGoogle Scholar
Shekar, A., McMullen, R.M., Wang, S.N., McKeon, B.J. & Graham, M.D. 2019 Critical-layer structures and mechanisms in elastoinertial turbulence. Phys. Rev. Lett. 122, 124503.Google ScholarPubMed
Shu, C.W. 1998 Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, (ed. Quarteroni, A.), pp. 325432. Springer.10.1007/BFb0096355CrossRefGoogle Scholar
Sid, S., Terrapon, V.E. & Dubief, Y. 2018 Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction. Phys. Rev. Fluids 3, 011301.Google Scholar
Song, J.X., Lin, F.H., Liu, N.S., Lu, X.-Y. & Khomami, B. 2021 Direct numerical simulation of inertio-elastic turbulent Taylor–Couette flow. J. Fluid Mech. 926, A37.CrossRefGoogle Scholar
Steinberg, V. 2021 Elastic turbulence: an experimental view on inertialess random flow. Annu. Rev. Fluid Mech. 53, 2758.CrossRefGoogle Scholar
Terrapon, V.E., Dubief, Y. & Soria, J. 2015 On the role of pressure in elasto-inertial turbulence. J. Turbul. 730 (16), 2643.10.1080/14685248.2014.952430CrossRefGoogle Scholar
Toms, B.A. 1949 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proc. 1st International Congress on Rheology, vol. 2, pp. 135141. North-Holland.Google Scholar
Virk, P.S., Mickley, H.S. & Smith, K.A. 1970 The ultimate asymptote and mean flow structure in Toms’ phenomenon. ASME J. Appl. Mech. 37 (2), 488493.CrossRefGoogle Scholar
Wang, S., Zhang, W., Wang, X., Li, X., Zhang, H. & Li, F. 2023 Maximum drag reduction state of viscoelastic turbulent channel flow: marginal inertial turbulence or elasto-inertial turbulence. J. Fluid Mech. 960, A12.10.1017/jfm.2023.151CrossRefGoogle Scholar
Wang, S.N., Shekar, A. & Graham, M.D. 2017 Spatiotemporal dynamics of viscoelastic turbulence in transitional channel flow. J. Non-Newtonian Fluid Mech. 244, 104122.10.1016/j.jnnfm.2017.04.008CrossRefGoogle Scholar
Warholic, M.D., Massah, H. & Hanratty, T.J. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27 (5), 461472.10.1007/s003480050371CrossRefGoogle Scholar
Warwaruk, L. & Ghaemi, S. 2024 Local flow topology of a polymer-laden turbulent boundary layer. J. Fluid Mech. 983, A22.10.1017/jfm.2024.131CrossRefGoogle Scholar
White, C.M. & Mungal, M.G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.CrossRefGoogle Scholar
Xi, L. & Bai, X. 2016 Marginal turbulent state of viscoelastic fluids: a polymer drag reduction perspective. Phys. Rev. E. 93, 043118.10.1103/PhysRevE.93.043118CrossRefGoogle ScholarPubMed
Xi, L. & Graham, M.D. 2010 a Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. J. Fluid Mech. 647, 421452.10.1017/S0022112010000066CrossRefGoogle Scholar
Xi, L. & Graham, M.D. 2010 b Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett. 104, 218301.CrossRefGoogle ScholarPubMed
Yamani, S., Keshavarz, B., Raj, Y., Zaki, T.A., McKinley, G.H. & Bischofberger, I. 2021 Spectral universality of elastoinertial turbulence. Phys. Rev. Lett. 127, 074501.10.1103/PhysRevLett.127.074501CrossRefGoogle ScholarPubMed
Zhang, H.N., Cheng, H.T., Wang, S.M., Zhang, W.H., Li, X.B. & Li, F.C. 2024 The minimal flow unit and origin of two-dimensional elasto-inertial turbulence. J. Fluid Mech. 999, A82.10.1017/jfm.2024.977CrossRefGoogle Scholar
Zhang, H.N., Zhang, W.H., Wang, XY., Li, Y.S., Ma, Y., Li, X.B. & Li, F.-C. 2023 On the role of tensor interpolation in solving high-WI viscoelastic fluid flow. Phys. Fluids. 35, 031708.10.1063/5.0141639CrossRefGoogle Scholar
Zhang, W.H., Shao, Q.Q., Li, Y.K., Ma, Y., Zhang, H.N. & Li, F.-C. 2021 b On the mechanisms of sheet-like extension structures formation and self-sustaining process in elasto-inertial turbulence. Phys. Fluids. 33, 085107.10.1063/5.0057181CrossRefGoogle Scholar
Zhang, W.H., Zhang, H.N., Li, Y.K., Yu, B. & Li, F.C. 2021 a Role of elasto-inertial turbulence in viscoelastic drag-reducing turbulence. Phys. Fluids. 33, 081706.10.1063/5.0056047CrossRefGoogle Scholar
Zhang, W.H., Zhang, H.N., Wang, Z.M., Li, Y.K., Yu, B. & Li, F.-C. 2022 Repicturing viscoelastic drag-reducing turbulence by introducing dynamics of elasto-inertial turbulence. J. Fluid Mech. 940, A31.10.1017/jfm.2022.255CrossRefGoogle Scholar
Zhu, L. & Xi, L. 2021 Nonasymptotic elastoinertial turbulence for asymptotic drag reduction. Phys. Rev. Fluids 6, 014601.10.1103/PhysRevFluids.6.014601CrossRefGoogle Scholar