Skip to main content Accessibility help

Applicability and failure of the flux-gradient laws in double-diffusive convection

  • Timour Radko (a1)


Double-diffusive flux-gradient laws are commonly used to describe the development of large-scale structures driven by salt fingers – thermohaline staircases, collective instability waves and intrusions. The flux-gradient model assumes that the vertical transport is uniquely determined by the local background temperature and salinity gradients. While flux-gradient laws adequately capture mixing characteristics on scales that greatly exceed those of primary double-diffusive instabilities, their accuracy rapidly deteriorates when the scale separation between primary and secondary instabilities is reduced. This study examines conditions for the breakdown of the flux-gradient laws using a combination of analytical arguments and direct numerical simulations. The applicability (failure) of the flux-gradient laws at large (small) scales is illustrated through the example of layering instability, which results in the spontaneous formation of thermohaline staircases from uniform temperature and salinity gradients. Our inquiry is focused on the properties of the ‘point-of-failure’ scale ( $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H_{pof}$ ) at which the vertical transport becomes significantly affected by the non-uniformity of the background stratification. It is hypothesized that $H_{pof} $ can control some key characteristics of secondary double-diffusive phenomena, such as the thickness of high-gradient interfaces in thermohaline staircases. A more general parametrization of the vertical transport – the flux-gradient-aberrancy law – is proposed, which includes the selective damping of relatively short wavelengths that are inadequately represented by the flux-gradient models. The new formulation is free from the unphysical behaviour of the flux-gradient laws at small scales (e.g. the ultraviolet catastrophe) and can be readily implemented in theoretical and large-scale numerical models of double-diffusive convection.


Corresponding author

Email address for correspondence:


Hide All
Balmforth, N. J., Llewellyn Smith, S. G. & Young, W. R. 1998 Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech. 355, 329358.
Balmforth, N. J. & Young, Y.-N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131167.
Balmforth, N. J. & Young, Y.-N. 2005 Stratified Kolmogorov flow. Part 2. J. Fluid Mech. 528, 2342.
Bryden, H. L., Schroeder, K., Sparnocchia, S., Borghini, M. & Vetrano, A. 2014 Thermohaline staircases in the western Mediterranean Sea. J. Mar. Res. (in press).
Gama, S., Vergassola, M. & Frisch, U. 1994 Negative eddy viscosity in isotropically forced two-dimensional flow – linear and nonlinear dynamics. J. Fluid Mech. 260, 95126.
Gargett, A. E. & Schmitt, R. W. 1982 Observations of salt fingers in the central waters of the eastern North Pacific. J. Geophys. Res. 87, 80178092.
Holyer, J. Y. 1981 On the collective instability of salt fingers. J. Fluid Mech. 110, 195207.
Holyer, J. Y. 1984 The stability of long, steady, two-dimensional salt fingers. J. Fluid Mech. 147, 169185.
Holyer, J. Y. 1985 The stability of long steady three-dimensional salt fingers to long wavelength perturbations. J. Fluid Mech. 156, 495503.
Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J. & Ozsoy, E. 2003 The diffusive regime of double-diffusive convection. Prog. Oceanogr. 56, 461481.
Kimura, S. & Smyth, W. D. 2007 Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear layer. Geophys. Res. Lett. 34, L21610.
Krishnamurti, R. 2003 Double-diffusive transport in laboratory thermohaline staircases. J. Fluid Mech. 483, 287314.
Kunze, E. 1987 Limits on growing, finite length salt fingers: a Richardson number constraint. J. Mar. Res. 45, 533556.
Kunze, E. 2003 A review of salt fingering theory. Prog. Oceanogr. 56, 399417.
Legras, B. & Villone, B. 2009 Large-scale instability of a generalized turbulent Kolmogorov flow. Nonlinear Process. Geophys. 16, 569577.
Linden, P. F. 1974 Salt fingers in a steady shear flow. Geophys. Fluid Dyn. 6, 127.
Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.
Manfroi, A. & Young, W. 2002 Stability of beta-plane Kolmogorov flow. Physica D 162, 208232.
Mei, C. C. & Vernescu, M. 2010 Homogenization Methods for Multiscale Mechanics. p. 330. World Scientific.
Merryfield, W. J. 2000 Origin of thermohaline staircases. J. Phys. Oceanogr. 30, 10461068.
Meshalkin, L. & Sinai, Y. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. J. Appl. Math. Mech. 25, 17001705.
Mirouh, G. M., Garaud, P., Stellmach, S., Traxler, A. L. & Wood, T. S. 2012 A new model for mixing by double-diffusive convection (semi-convection). I. The conditions for layer formation. Astrophys. J. 750, 61.
Mueller, R. D., Smyth, W. D. & Ruddick, B. 2007 Shear and convective turbulence in a model of thermohaline intrusions. J. Phys. Oceanogr. 37, 25342549.
Novikov, A. & Papanicolau, G. 2001 Eddy viscosity of cellular flows. J. Fluid Mech. 446, 173198.
Phillips, O. M. 1972 Turbulence in a strongly stratified fluid is it unstable? Deep-Sea Res. 19, 7981.
Posmentier, E. S. 1977 The generation of salinity fine structure by vertical diffusion. J. Phys. Oceanogr. 7, 298300.
Radko, T. 2003 A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497, 365380.
Radko, T. 2005 What determines the thickness of layers in a thermohaline staircase? J. Fluid Mech. 523, 7998.
Radko, T. 2008 The double-diffusive modon. J. Fluid Mech. 609, 5985.
Radko, T. 2011 Mechanics of thermohaline interleaving: beyond the empirical flux laws. J. Fluid Mech. 675, 117140.
Radko, T. 2013 Double-Diffusive Convection. p. 344. Cambridge University Press.
Radko, T., Bulters, A., Flanagan, J. & Campin, J.-M. 2014 Double-diffusive recipes. Part 1: Large-scale dynamics of thermohaline staircases. J. Phys. Oceanogr. 44, 12691284.
Radko, T. & Smith, D. P. 2012 Equilibrium transport in double-diffusive convection. J. Fluid Mech. 692, 527.
Radko, T. & Stern, M. E. 2011 Finescale instabilities of the double-diffusive shear flow. J. Phys. Oceanogr. 41, 571585.
Ruddick, B. R., McDougall, T. J. & Turner, J. S. 1989 The formation of layers in a uniformly stirred density gradient. Deep-Sea Res. 36, 597609.
Ruddick, B. 1997 Differential fluxes of heat and salt: implications for circulation and ecosystem modelling. Oceanography 10, 122127.
Ruddick, B.2014 On the scale of layers formed in strongly stratified turbulent mixing. Unpublished manuscript.
Ruddick, B. & Kerr, O. 2003 Oceanic thermohaline intrusions: theory. Prog. Oceanogr. 56, 483497.
Schmitt, R. W. 1979a The growth rate of supercritical salt fingers. Deep-Sea Res. 26A, 2344.
Schmitt, R. W. 1979b Flux measurements on salt fingers at an interface. J. Mar. Res. 37, 419436.
Schmitt, R. W. 1994 Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26, 255285.
Schmitt, R. W. 2003 Observational and laboratory insights into salt finger convection. Prog. Oceanogr. 56, 419433.
Schmitt, R. W., Ledwell, J. R., Montgomery, E. T., Polzin, K. L. & Toole, J. M. 2005 Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science 308, 685688.
Shen, C. Y. & Schmitt, R. W. 1995 The wavenumber spectrum of salt fingers. In Double-Diffusive Convection (ed. Brandt, A. & Fernando, H.), AGU Geophysical Monograph, vol. 94, pp. 305312. American Geophysical Union.
Sivashinsky, G. 1985 Weak turbulence in periodic flows. Physica D 17, 243255.
Smyth, W. D. & Ruddick, B. 2010 Effects of ambient turbulence on interleaving at a baroclinic front. J. Phys. Oceanogr. 40, 685712.
Stellmach, S., Traxler, A., Garaud, P., Brummell, N. & Radko, T. 2011 Dynamics of fingering convection. II: The formation of thermohaline staircases. J. Fluid Mech. 677, 554571.
Stern, M. E. 1960 The ‘salt-fountain’ and thermohaline convection. Tellus 12, 172175.
Stern, M. E. 1967 Lateral mixing of water masses. Deep-Sea Res. 14, 747753.
Stern, M. E., Radko, T. & Simeonov, J. 2001 3D salt fingers in an unbounded thermocline with application to the Central Ocean. J. Mar. Res. 59, 355390.
Stern, M. E. & Simeonov, J. 2002 Internal wave overturns produced by salt fingers. J. Phys. Oceanogr. 32, 36383656.
Traxler, A., Stellmach, S., Garaud, P., Radko, T. & Brummel, N. 2011 Dynamics of fingering convection. I: Small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677, 530553.
Turner, J. S. 1967 Salt fingers across a density interface. Deep-Sea Res. 14, 599611.
Walsh, D. & Ruddick, B. R. 2000 Double-diffusive interleaving in the presence of turbulence: the effect of a non-constant flux ratio. J. Phys. Oceanogr. 30, 22312245.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed